BREAKING AWAY FROM THE OS SHADOW:
A PROGRAM EXECUTION MODEL AWARE

THREAD VIRTUAL MACHINE
FOR MULTICORE ARCHITECTURES

by
Juan del Cuvillo

A dissertation submitted to the Faculty of the UniversityDelaware in partial
fulfillment of the requirements for the degree of Doctor ofl®ophy in Electrical and
Computer Engineering

Summer 2008

(©) 2008 Juan del Cuvillo
All Rights Reserved



BREAKING AWAY FROM THE OS SHADOW:
A PROGRAM EXECUTION MODEL AWARE

THREAD VIRTUAL MACHINE
FOR MULTICORE ARCHITECTURES

by
Juan del Cuvillo

Approved:
Gonzalo R. Arce, Ph.D.
Chairperson of the Department of Electrical and Computei&ering

Approved:

Michael J. Chajes, Ph.D.
Dean of the College of Engineering

Approved:

Debra Hess Norris, M.S.
Vice Provost for Graduate and Professional Education



Signed:

Signed:

Signed:

Signed:

| certify that | have read this dissertation and that in mynagm it meets the
academic and professional standard required by the Uitiyais a dissertation
for the degree of Doctor of Philosophy.

Guang R. Gao, Ph.D.
Professor in charge of dissertation

| certify that | have read this dissertation and that in mynagm it meets the
academic and professional standard required by the Uitiyars a dissertation
for the degree of Doctor of Philosophy.

Xiaoming Li, Ph.D.
Member of dissertation committee

| certify that | have read this dissertation and that in mynam it meets the
academic and professional standard required by the Uitiyas a dissertation
for the degree of Doctor of Philosophy.

Stephan Bohacek, Ph.D.
Member of dissertation committee

| certify that | have read this dissertation and that in mynagm it meets the
academic and professional standard required by the Uitiyars a dissertation
for the degree of Doctor of Philosophy.

John Cavazos, Ph.D.
Member of dissertation committee



ACKNOWLEDGEMENTS

First, | would like to thank my advisor, Prof. Guang R. Gaa, ies continuous
encouragement and support throughout my long journey idugtt® school. His conta-
gious enthusiasm and motivation were invaluable, espgdaling the downturns, and
his creativity helped to create the environment that feteis my research.

Second, | am grateful to the “Cyclops” community, espegitdl the members
of the CAPSL group, for their helpful comments, invalual@edback, and for helping
to move the Cyclops-64 software project forward and, tleeeefmy research as well.
Special thanks to Ziang Hu, Weirong Zhu, Gan Ge, and Fei Chih,whom | had the
privilege to work from the very early stages of the Cyclo@spBoject.

Third, | would like to acknowledge all the ETI employees wim,one way or
another, are helping to bring the Cyclops-64 system soéwgpr

Finally, | wish to express my deepest gratitude to Elizalbetther unconditional
support, encouragement, and love. Without her, this warlphi would not have been
possible. To Alexia for bringing more joy that | thought pixs, and reminding me when

it was time to take a break, and also to my family in Spain.



To Elizabeth



TABLE OF CONTENTS

LISTOFFIGURES . . . . . . . . . . . iX

LISTOFTABLES . . . . . . . Xil

ABSTRACT . . . . . Xiii
Chapter

1 INTRODUCTION . . . . . .. s, 1

1.1 TheCyclops-64 Project . . . . . . . .. ... ... ... ....... 4

1.2 Contributions . . . . . . . ... 6

1.3 SYnopsis. . . . . ... 7

2 BACKGROUND . . . . . . . 9

3 HARDWARE ARCHITECTURE . . . . ... .. ... ... ........ 13

3.1 Coarse Multicore Architectures . . . . . . . ... ... ... ... .. 13

3.2 Many-Core Architectures. . . . . . . . . . ... ... ... 14

3.3 Cyclops-64 Architecture . . . . . . . ... ... 14

4 CYCLOPS-64 SYSTEM SOFTWARE . . . . ... ... .. ... ..... 19

4.1 System Software Architecture. . . . . . . ... ... 20

4.2 HostSoftware. . . . . . ... 21

421 Jobscheduler. . . . .. ... 21

4.2.2 Resourcemanager. . . . . . . ... 22

4.2.3 Hostto Cyclops-64 communication. . . . . . . ... .. ... 23

4.3 Cyclops-64 Toolchain. . . . . . . . ... .. ... ... ........ 24

Vi



4.4 FAST: Cyclops-64 Architectural Simulator . . . . . . . ... ... .. 26

4.4.1 Instructionexecution. . . . . .. .. .. ... ... ... 27
4.4.2 Exceptionhandling. . . . . ... ... ... L. 30
4.4.3 Segmented memoryspace . . . . . . ... ... 31
4.4.4 Execution trace and instruction statistics. . . . . .. . .. .. 32
4.4.5 Memory and interconnect contention. . . . . ... ... ... 32
4.4.6 A-switchdevice. . . . . . .. ... ... ... .. .. .. ... 34
4.4.7 Simulatorinternals. . . . . . .. ... 34

5 TNT: CYCLOPS-64 THREAD VIRTUAL MACHINE . . . . ... ... .. 36
51 TNTDesign. . .. ... .. . 37
5.1.1 ThreadModel. . . . . . ... .. .. ... .. ... ... 38
5.1.2 MemoryModel . . . . .. ... 39
5.1.3 SynchronizationModel. . . . . . .. ... ... L. 40

5.2 TNTImplementation . . . . . . .. ... ... ... ... ....... 42
5.2.1 Hardware Threads (HT) . . . . . . .. ... ... .. ... ... 42
5.2.2 \Virtual Threads (VT) . . . . . . . . . ... .. ... .. .... 44
5.2.3 Thread Scheduling. . . . . . .. ... ... ... ... ... 44

6 MAGMA: AMEMORY-ADAPTIVE MULTITHREADED

ARCHITECTUREMODEL . . ... ... ... . ... .. ... ...... 47
6.1 Introductionto MAGMA . . . . . . . .. ... 47
6.1.1 Thread Execution. . . . . . . ... ... .. ... ....... 48
6.1.2 Thread Synchronization. . . . . . ... ... ... ...... 50
6.1.3 DataPercolation. . . ... ... ... ... ... ....... 55

6.2 MAGMA Program ExecutionModel . . . . . . . ... ... ... ... 58
6.2.1 MAGMA ThreadModel. . . . .. ... ... ... ... .. ... 59
6.2.2 MAGMAOperations . . . . . ... ... ... ... ...... 61

6.3 MainFeaturesof MAGMA . . . . . . . . . ... 64
6.3.1 Fibonacci Example . . . . . . .. .. ... ... L. 65

Vii



6.3.2 N-QueensExample . . . . .. ... ... ... .. ... .. 71

6.3.3 daxpyExample . . . . ... ... ... 78
7 EXPERIMENTAL RESULTS . . . . . . . . . . .. ... .. ... ..... 85
7.1 TNTResults. . . . . . . . . . 85
8 CONCLUSIONS . . . . . 92
8.1 FutureWork. . . . . . . . .. 93
Appendix
N-QUEENSSOURCECODE . . . . . . . . . . ... .. ... . . ... .. 94
A.l Sequential. . . . .. ... ... 94
A2 MAGMA . . . e e e 94
A3 EARTH . . . . 94
Ad Cilk ... 94
BIBLIOGRAPHY . . . . . 102

viii



3.1

3.2

3.3

4.1

4.2

4.3

5.1

5.2

5.3

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

LIST OF FIGURES

Cyclops-64 Computing Environment . . . . . . .. .. ... .... 15
Cyclops-64 Supercomputer . . . . . . . . .. ... 16
Cyclops-64Blade. . . . . . . . . . ... ... .. .. ... 17
Cyclops-64 Software Toolchain . . . . . . ... ... ... ..... 25
FAST Four-Stage Instruction Pipeline. . . . . . ... ... ... .. 27
Interconnection to the On-Chip Crossbar. . . . . . .. .. ... .. 33
Producer-Consumer Sample Program . . . . . . . ... ... ... 41
Barrier Sample Program . . . . . . .. .. ... ... L. 42
TNTFlowChart. . . . . . ... ... . 43
MAGMA HeloWbrld Program. . . . . . . ... .. ... ... ... 48
MAGMA Thread States. . . . . . . .. .. ... .. .. ... .... 49
MAGMA Thread Handle . . . . . . . . .. ... ... ... ..... 51
Thread Synchronization . . . . . .. ... ... ... ... ..... 52
Thread Synchronization with Indexed Slots. . . . . . . .. ... .. 54
MAGMA daxpy Program . . . . . . . .. .. .. ... .. ...... 57
SequentiaFibonacci Program. . . . . . . ... ... ... ... 66
MAGMA Fibonacci Call Graph. . . . . . ... ... ... ... ... 68

iX



6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

7.1

7.2

7.3

7.4

7.5

Al

A2

A3

MAGMA Fibonacci Program . . . . . . . .. .. ... ... ..... 69

EARTH Fibonacci Program. . . . . . . . . . ... ... ... .... 70
Cilk Fibonacci Program. . . . . . . .. ... ... ... ....... 71
N-QueensRecursion. . . . . . . . . ... ... 72
SequentiaN-QueensProgram. . . . . . . . .. ... 73
MAGMA N-QueensCallGraph. . . . . ... .. ... ... ..... 74
MAGMA N-QueensProgram . . . . . . . .. .. ... ... ..... 75
Cilk N-QueensProgram. . . . . . . . . . . .. .. ... ....... 76
EARTHN-QueensProgram. . . . . . . . . . .. ... ... ..... 77
Sequentiabaxpy Program. . . . . . . ... ... 78
MAGMA daxpy Program . . . . . . .. ... ... ... ....... 80
EARTHdaxpy Program. . . . . . . .. .. ... .. ... ...... 82
Cilk daxpy Program . . . . . . . . . . ... .. .. .. ... ..... 83
TNT Empty Microbenchmark. . . . . . . ... .. ... ... .... 86
Empty Microbenchmark Execution Time. . . . . . . . .. ... ... 88
Thread Execution Interleaving. . . . . . . . ... ... ... .... 88
TNT Binary Tree Program . . . . . . . . . . . . . ... ... .... 89
Binary Tree Microbenchmark Execution Time . . . . . . . . .. .. 91
SequentiaN-QueensProgram. . . . . . . . .. ... ... 95
MAGMA N-QueensProgram . . . . . . . .. .. ... ... ..... 96
MAGMA N-Queensnai n Function . . . .. ... ... ... .... 97



A4

A5

A.6

A7

EARTHN-QueensProgram. . . . . . . . . . .. ... ... ..... 98
EARTH N-Queensnai n Function . . . . . ... ... ... ..... 99
Cilk N-QueensProgram. . . . . . . . . .. . ... ... ....... 100
Cilk N-Queensmai n Function . . . . . . . ... ... ... ..... 101

Xi



3.1

4.1

4.2

4.3

7.1

LIST OF TABLES

Examples of Many-Core Architectures . . . . . . . . ... ... .. 14
FAST Simulation Parameters . . . . . . . ... .. ... ... ... 27
Cyclops-64 Instruction Set Summary . . . . . . ... .. ... ... 28
Cyclops-64 Instruction Timing . . . . . . . ... ... ... ..... 30
Empty Microbenchmark System and User Execution Times. . . . . 87

Xii



ABSTRACT

The Cyclops-64 (C64) project questions fundamentally th&bility of conven-
tional operating systems to achieve high performance. Dosgzecific application ex-
perts who have participated in the conception of all asp#dtse system software for the
C64 supercomputer mandated that Linux was not adequatdr diegious experience
with parallel applications that did not scale well for varsoreasons motivated us to de-
velop a standalone Thread Virtual Machine (TVM) from sdnatts implementation in
the form of the TiNy Threads (TNT) library had the clear golhltowing applications to
achieve full resource utilization.

This dissertation is about the C64 system software in géraerd the TNT library
in particular. TNT replaces the conventional OS with a nandisive runtime system.
Even though it is implemented as a user-level library, TNThages the hardware re-
sources directly. In addition, TNT provides a solid founolatfor the development of
advanced program execution models. However, for rapidopyping of applications,
TNT also provides a familiar Linux-like programming enviraent.

As evidence that the TNT model provides a good platform tceexrpent with
innovative execution models, we developed MAGMA. Definedaasemory adaptive
program execution model for multicore architectures, MAGMses percolation to mi-
grate data that the user (programmer or compiler) identifes level of the memory
hierarchy local to the processing element before compmurtatiarts. MAGMA takes ad-
vantage of the large number of thread units in C64. MAGMA iempénts a multithreaded

percolation engine that runs on a number of cores to maxibanelwidth utilization.

Xiii



Chapter 1

INTRODUCTION

Throughout history, science and technological progresdban the result of the-
ory and experiment. More recently, with the advent of corapuatachinery, scientists
have been able to analyze and better understand compleicahysenomena and engi-
neering systems through computer models, to such an ektrtamputer modeling and
simulations are nowadays widely recognized as fundameataponents in science and
technology development.

In parallel to the expansion of computer models and simutagchniques, high-
end computing systems, also known as supercomputers, leaeenle increasingly im-
portant because they allow scientists and engineers tolrsade systems in far greater
detail and complexity than what main-stream computer systlow.

Earth and atmospheric sciences, energy and environmeniscale science and
technology, life sciences, and aerospace vehicle desegsane of the application do-
mains that currently demand an increase in both computimgepand memory space.
This increase ranges from 100 to 1,000 times of today’s caimgpgystems resources to
tackle certain important scientific and engineering protg¢l13].

Despite advances in high-end computing technology, thectfe use of high-
end computing systems is still limited by issues such as pgstem performance and
reliability, as well as the increasing cost and risk of saitevdevelopment. In fact, there
is a widespread agreement among the high-end computing aartynthat those aspects

of the hardware and software that impact performance, progrability, ease of use, and



scalability need to be addressed if we are to manage suchd seye computational
problems.

From the hardware standpoint two separate matters needdonsedered: chip
design and system integration. First, as advances in gt@gjcircuits technology allow
the feature size to drop, density of transistors on silidupsare to continue increasing
for the next years following Moore’s La¥f44]. Not surprisingly, billion-transistors chips
have been launched already by a few major chip manufact{#@y$] and multi-billion
transistors chips are expected before 2010 [10, 49, 41, 533 60]. By that time,
the main limitation for the emergence of new micro-architee functionality will be the
computer architect’'s imagination. However, hardwareglesis are expected to deal with
issues that have started to surface in current technolagyintance, CPU power dissi-
pation imposes already serious constraints on the scaliclgak frequency. In addition,
as wires become slower relative to logic gates, the digidhwf a single global clock
throughout a chip will be a difficult challenge. A paradignoposed to cope with this
constraintis the integration of a large number of simplepssors on a single die, in what
is known as Chip Multi-Processors (CMP), instead of deypthe entire die to a single
and complex processor. In the last years, all major micrmgssor manufacturers have
been releasing dual- and quad-core versions of their psocgsand have also announced
their intentions to bring eight-core chips to the marketefHfore, as the semiconductor
technology surpasses the integration of a billion transtsbn an integrated circuit, we
should expect chips based on multicore architectures torbecommonplace. Second,
there is greater evidence that applications would benefiifstantly from an alternative
to the commercial off-the-shelf (COTS) based solutions$ liewe dominated the super-
computing arena over the last decade. Indeed, governmenti&g and hardware vendors

are currently working on a major departure from the Beowalaligm [2, 34, 46].

! Moore’s Law describes the trend that the number of transistwegrated on a chip
would double about every two years.



From the software point of view, programmability, portégiland reliability of
both operating and runtime systems are still open issuesselére only aggravated by the
requirement for sustainable and scalable real (not peafgrp@ance. Increasing coupling
among all the software layers seems an important trend aimewrease transparency
and reduce overheads. If the hardware was efficiently exptuséhe programmer, the
user could take advantage of the functionality that imppetformance. A question still
remains: how to narrow the interface between the raw arctoite and the user.

In December 1999, IBM announced the Blue Gene project asfart & build
a new generation of supercomputers. Since then, two diffenehitecture designs have
been proposed, which are at different stages of developrBard Gene/L [3, 24, 25] sys-
tems, based on a dual- and quad-core Power4 processorshéaveshipped to various
research institutions and are among the top ten most povgenbercomputers. Cyclops-
64 [19] employs a state-of-the-art multiprocessor-oriig-technology to build a com-
pletely new chip. Hence, it is in an earlier stage of develepnwith the first system
prototype expected by the end of this year.

Cyclops-64 (C64) is a petaflop supercomputer project uneegldpment at IBM
Research Center. C64 is designed to serve as a dedicatediteoangine for running
high performance applications such as molecular dynatuctudy protein folding, and
image processing, to support real-time medical procedlsisg a cellular organization,
a C64 petaflop machine is built out of millions of simple pregiag cells; a thread unit, the
base processing element, is replicated and conformedamera structural organizations.
Two thread units, the same number of SRAM memory banks, armmhtriy point unit
constitute a processor. Eighty processors connected tosshlmr network, instruction
cache, bidirectional inter-chip routing ports, and anriiatee to off-chip DDR SDRAM
are integrated on a C64 chip. Finally, tens of thousands dfr@@les, each one consisting
of a C64 chip, external DRAM and a small amount of externalriiaice logic, build a C64

supercomputer.



With the advent of a new generation of high performance cdamgystems, as
well as features unique to those found in the Cyclops-64ilegllarchitecture, it is the

objective of this research to answer questions such as:

e What role should the program execution model play in the defmand use of
computer systems, in general, and of high performance congpsystems, in par-

ticular?

What does the interface between the program execution naodeDS look like?

How can the OS facilitate the adoption of new program exeautiodels?

Should the OS, as we know it today, be replaced?

Can a program execution model provide the umbrella undeciwdil the aspects of
a computing system (hardware, runtime system, compileruaer) work together
to minimize the effects that limited memory bandwidth andganemory latency
have on application performance and, as a result, on theiptiody of a computing

system?

1.1 The Cyclops-64 Project

The Cyclops cellular architecture, first proposed in lateQkSat IBM’s T.J. Wat-
son Research Center, has since evolved substantially feretit application contexts
and directions. The latest Cyclops-64 (C64) chip architecemploys a multiprocessor-
on-a-chip design with a large number of hardware threads it embedded memory.
The C64 has a high computation to memory ratio (hnumber-afkare-threads/on-chip-
memory); 1 to 2 orders of magnitude higher than a modern mproaessor chip.

The C64 is designed to serve as a dedicated compute enginenfong high per-
formance applications such as molecular dynamics, to gpuolgin folding, and image

processing, to support real-time medical procedures. TB¥es0percomputer is attached



to a host system through a number of Gigabit Ethernet link& Aost system provides a
familiar computing environment (such as Linux) to applicatsoftware developers and
end users. Each C64 chip has access (through the Etheksttlira common file server
used for storing input and output data sets used and prodycagplication programs.

The main objective behind the C64 chip design is to build affegt computer by
scaling up some millions of simple processing elements aod¢ling massive intra-chip
parallelism to tolerate memory and functional unit latesciOn the C64 architecture, the
computational cell is a simple thread unit; a 64-bit in-orB¢SC processor with a small
instruction set architecture (60 instruction groups) apeg at 500MHz. If a thread stalls
on a memory access because of a data dependency betweentioss, other threads
can proceed independently.

With more than 100 thread units, a C64 chip can be seen as ay isymmetric
MultiProcessing (SMP) system. Although memory is sharetiiwia chip, communica-
tion among nodes is only possible by means of message padsenge, a C64 super-
computer can be seen as a cluster of SMPs. Simplicity in heneldesign led to a system
with no resource virtualization (virtual addresses mapatly to physical addresses and
execution is non-preemptive) and a non-uniform addressespr@th several memory lev-
els exposed directly to the user). Caches, which would be teakeep coherent, have
been replaced with on-chip memory mapped into the addresesphence controlled by
the programmer.

The Cyclops-64 system software development project begfhrtive objective of
designing a full system software infrastructure for the @6zhitecture. Such a software
infrastructure had to provide a reasonable interface fptiegtion developers, yet ex-
pose as much functionality as possible to achieve highdexfeperformance. Given an
architecture like C64, aimed for sustainable performahceugh simplicity, it was not
the intention of this project to build a conventional softev@levelopment environment.

Instead, we built a custom system software from the ground up



Based on our previous experience in the embedded Cyclopseect [52, 18],
we believe the first requirement from the system softwanedgaint is a Thread Virtual
Machine that can efficiently manage hardware resourcesasiallarge number of thread

units without OS intervention, and will cause no disruptiorthe user application.

1.2 Contributions
Many people have been involved in various aspects of theapgeb4 project, and
in the development of the Cyclops-64 system software. Thewmng are the contribu-

tions that are solely or primarily the work of the author:

¢ Reuvising the role that the OS plays in current high perforceasomputing systems,
and proposing to replace the OS with a Program Execution Masare Thread
Virtual Machine (TVM). A TVM not only provides the abstracti layer and the
application program interface that programmers expedtitlalso supports the di-
rect mapping of program execution models to the architeattithout interference
from the OS.

e Proposing a system software methodology centered in thmipeeabove, and ar-
chitecting the design and development of the system saftimfirastructure for the

Cyclops-64 supercomputer according to such methodology.

e Designing and constructing FAST, a functionally accurai@utator for the
Cyclops-64 architecture. FAST played a critical role in fneject, as it has been
supporting all Cyclops-64 system software design, devety and testing for the

past four years and helped in the verification of the Cyclepssgic design as well.

e Designing and implementing TNT, a Thread Virtual Machinetfee Cyclops-64
architecture. TNT, provided in the form of a light-weightarokernel and runtime

system library, has been in production use for the past taosye



e Studying the OpenMP programming model on Cyclops-64. GmerOpenMP
compiler that was ported to the Cyclops-64 architecturepptemized the OpenMP
runtime library to study the feasibility of OpenMP as a pbksiprogramming
model for Cyclops-64.

e Demonstrating that the Cyclops-64 system software platfanplemented as part

of this research, is sound.

e Defining the MAGMA Program Execution Model as an abstract eiéal running
multithreaded applications on multicore based systemsGMA applications are
able to tolerate the different latencies that are commonuhifievel memory hier-

archies present in modern multicore architectures viagbation.

e Comparing the MAGMA, EARTH, and Cilk Program Execution MtgJeand ex-

plaining their similarities and differences, as well asiterengths and weaknesses.

¢ Implementing the MAGMA Program Execution Model for the Qye$-64 chip ar-
chitecture, and the corresponding software support in §eops-64 system soft-

ware toolchain.

e Demonstrating that the TNT model provides a solid foundhetir development of

advanced Program Execution Models.

e Coding various benchmarks according to the MAGMA Prograradtxion Model

so they may be tested with the Cyclops-64 system softwaieltaim.

1.3 Synopsis
This dissertation is organized as follows:
In Chapter 2, we review the early history of operating systasiwell as the state

of the art today. We point out that some of the principlestdisthed in the 1960s with



the purpose of using computing systems more efficiently tilleirs use today. How-

ever, like other authors, we question whether the same medgtectly applicable to
high-end computing systems. We also compare our work witlynogher threading and
multithreading packages available these days, and weigighvhy none of them fit our
purpose.

Our research proposes a new system software methodologyl @triuture high-
end computing systems using multicore architectures. ©h&gprovides a classification
of multicore architectures (coarse and fine-grain mulagorhis chapter also introduces
Cyclops-64 (C64), the many-core architecture used in gsearch.

Chapter 4 describes the design and implementation of thie@y64 system soft-
ware. It focuses on three main components: the host softtveg€64 toolchain, and the
FAST simulator.

Chapter 5 describes the key component of the C64 systemaseftand the pur-
pose of this research, the TiNy Threads Thread Virtual MaehiFirst, we present the
architecture of the overall TVM, then we describe the impatmation of TNT.

In Chapter 6 we present MAGMA, a memory adaptive program @ac model
for many-core architectures. We use program examplesustrdlte the basic features
of the program execution model, we define the MAGMA model ardenumerate the
operations supported in the MAGMA model, and we finish withbanparison between
MAGMA, EARTH and Cilk program execution models.

Chapter 7 summarizes our experimental results. We presefiinal conclusions
and future work in Chapter 8. Appendix A provides the conghaiurce code of this-
Queens program that we used in the comparison between MAGMA, EARA], Cilk.



Chapter 2

BACKGROUND

In the early days of computing, when mainframes and miniagens were ex-
tremely expensive, the notion of sharing computing resesitook root. Multitasking, a
collection of methods that facilitate sharing common resesiamong multiple processes
and users, became popular. First, multiprogramming systeene developed, in which
a task runs until the program performs an operation thatiregjwaiting for an external
event. In order to efficiently use an expensive CPU, in mudgpammed systems a pro-
cess that becomes idle waiting for 1/0 is swapped out, umilifO operation completes.
Multiprogramming (operating) systems required the ini@mbf a number of techniques,
including the concepts of virtual memory [27, 38, 5] and tismaring [12, 11]. Virtual
memory not only gives a program the illusion of a large andioolwus address space, but
it also solves the memory protection problem and permitssitseshare memory segments
containing data or procedures. More importantly, virtuahnory provided the foundation
for an unparalleled degree of programming generality thstiil in use today [20, 21, 15].
Time-sharing provided multiple users simultaneous acteasomputing system. In the
first time-sharing systems, a user was serviced using sonee oser’s idle time. With
the advent of hardware and software support for preempti@gperating system could
establish a fixed time slice per process, and distribute td @me among all the users
of a system in an orderly fashion.

The aforementioned concepts, methods, and techniqueshiEsabove such as

virtual memory, time-sharing, multiprogramming, mulgkang, etc. are still in use in



modern operating systems. They are of practical use on raamef, servers, and work-
stations wherein the goal is to maximize a computing systewughput, measured as
the number of tasks completed by unit of time. However, therajoonal model of su-
percomputers is different. A supercomputer focuses on cdimg power to do one task
(for a single user) involving numerically intensive caltibns, such as the applications
mentioned in Chapter 1.

Over the last decade, computing systems based on commeftitle-shelf
(COTS) microprocessors and the Beowulf paradigm, or dssteve dominated the su-
percomputing arena. Among other things, this dominatiosriesulted in the adoption
of a conventional operating system such as Linux as the de $téandard kernel for high
performance computing.

In the past few years, when the processor count reacheddbhsahd order mag-
nitude, supercomputer manufacturers and users beganite apiplication performance
loss due to interference of the operating system [50, 7].18\thie community began to
guestion the appropriateness of Linux (or Linux-like) apgrg systems for high com-
puting systems, IBM decided to develop a custom kernel feBlue Gene/L supercom-
puter [24]. Brightwell et al. also made both technical andigcarguments against the
adoption of Linux for large scale computing systems, ang freposed a lightweight
kernel (LWK) instead [9]. They mentioned issues such as la ¢h@redictability when
the operating system preempts the application, and thesalirapact of virtual memory
in the communication library. They also expressed concetim thve rapid developments
in the kernel, distributions, and development environmmgntgeneral. On the other hand,
Minnich et al. claimed that LWKs are optimized for one typeapplication activity, and
they remove many needed capabilities such as file systemlsgtspand security. They
proposed a rightweight kernel (RWK) based on an off-thdfdteenel (i.e. Linux) [43].
Following suit, IBM has recently launched a study to evaduate effect of replacing the

custom kernel with Linux on the compute nodes of Blue GenBA].[ IBM claims that

10



certain applications require capabilities such as thosatioreed by Minnich. Beckman
et al. propose a third point of view [4]. They suggest thatftieeis should be on the prob-
lems that will prevent high performance computing systeramfreaching the Petaflop
barrier. Among others, they mention issues such as synizatton and collective opera-
tions, parallel I/0, and fault tolerance.

Regardless of whether the kernel is heavyweight (HWK),tiighight (LWK) or
rightweight (RWK), none of the previous work takes into ddesation the importance
of the Program Execution Model, or the additional challentpecome with the arrival
of many-core architectures. On the other hand, the goal ofesearch is precisely to
identify the critical aspects of a Program Execution Modelparticular those likely to
become relevant when working with many cores. We also platetoonstrate that the
Program Execution Model can be integrated into the lowllgystem software, primarily
for the reason that we believe said model should be an irtegreof a computing system,
including high-end computing systems.

There is also a myriad of work related to the design and impteation of
thread libraries found in multithreaded runtime systemspmvided as stand-alone
thread packages such as: Coda [51], Pthreads [45], Quicka@lk [37], TAM [14],
uThreads [54], Converse [35], Lazy Threads [29], Nano-atisd47], OpenThreads [31],
Active Threads [61], Cilk [28], NPTL [22], Cappricio [59].

These thread packages have been developed as part of timeersgstem for mul-
tithreaded parallel programming languages. Their goale baen to provide portability,
interoperability and open implementation with regard teige decisions (e.g. schedul-
ing and preemption). To achieve portability across pdraiechines and environments, a
number of them assume a common software substrate that thed@d8achine-dependent
layer will provide. Unlike them, TNT is a standalone userdity that provides high ef-
ficiency at the expense of portability, running directly ap tof the C64 architecture

without kernel support.
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Some multithreaded programming models rely on sophigticedmpiler analysis
to achieve efficiency [14, 29]. On the other hand, TNT obtaiffisiency by integrating
hardware and virtual thread management.

The BlueGene/L Compute Node Kernel (CNK) also replaces tmwentional
OS [24]. The kernel provides 2 modes of operation (copraremsd virtual node modes)
aimed at maximizing the overlapping between computati@c@mmunication to expose
the parallelism that MPI and UPC, the programming modeldae for this system,
may expose. However, these programming languages allowpi@ss fine-grain paral-
lelism. On the other hand, TNT supports multithreaded etx@cas the natural way to
make efficient use of the 160 processing elements in a C64 chip

The implementation of the EARTH-MANNA multithreaded systeuns directly
on top of the hardware without the assistance of the OS [3RT i a flexible special-
purpose multithreaded library, whereas the EARTH-MANNAstgyn was the specific
implementation of the EARTH program execution model. Aiddially, the implemen-
tation of some key aspects of the EARTH model are not direxgtlylicable to C64. For
instance, in EARTH-MANNA threads allocate their frame i theap. In C64, such a
feature would result in poor performance because of thedtRAM bandwidth.

Cyclops-64 is not the only system with shipping I/O. Blue &&rcompute nodes
also ship I/O requests to the 1/0 nodes. However, in Blue G&eih® nodes are dedicated
for I/O and run a Linux kernel [24]y. On Cyclops-64, 1/0 nodes the TNT kernel
and forward 1/O requests to the front-end cluster, wherelM@eoperation is actually
performed.

To the best of the author's knowledge, there is not previooskvgimilar to
RMEM. Maybe because the configuration of the C64 supercoenpabnsisting on a
front-end cluster attached to a C64 back-end engine, ismmam. However, we be-
lieve, RMEM provides the foundation of a programming enmire@nt for heterogeneous

architectures.
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Chapter 3

HARDWARE ARCHITECTURE

In the last decade, performance gain experienced by theisedef commercial
computing systems was riding on advances in integrateditsreechnology, in particular
on increases in clock speeds. Since the clock frequencyisanstrained by issues such
as CPU power consumption and dissipation, computer aothigtarted to look at better
ways to use the ever increasing transistor density. As th&eu of transistors on a chip
continues to double every two years, performance impronesrere expected to come

from the development of multicore processors, among otiveniations.

3.1 Coarse Multicore Architectures

Nowadays there are two trends in specifying and designinijicate architec-
tures. On one end, manufacturers of common-off-the-shetfgssors take advantage of
the advances in the semiconductor manufacturing techpotogduce the size of a com-
mercial microprocessor and replicate several of theseegems into the same die size.
This type of multicore architecture is also known as coarsétioore. By integrating
multiple cores into the same die, manufacturers providéoousrs with better perfor-
mance per watt solutions. However, these manufacturemesedoping few architecture
innovations. In particular, as the package pin count remaimstant, so does the mem-
ory bandwidth. As a consequence, applications are moréy likenotice the effect of
bandwidth and latency limitations on performance. In otherds, in coarse multicore

architectures, applications will often have to face the MgnWall problem [62, 42].
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Table 3.1: Examples of Many-Core Architectures

Manufacturer| Processor Family No. of cores

IBM Cyclops-64 160 thread units

IBM Cell 1 PowerPC and 8 SPEs
Intel Tera-scale 80 cores

Intel Larrabee 16 — 24 cores

Nvidia Tesla GPU 128 streaming processors
ClearSpeed | CSX600 96 processing elements
Cisco CSR Metro 192 processing elements
Tilera TILE64 64 processor cores

3.2 Many-Core Architectures

In addition to coarse multicore architectures, more rdgehére has also been an
industry trend towards the design and fabrication of firErgmulticore or many-core
architectures. Compared to coarse multicore, many-cat@atactures integrate a much
larger number of small cores on a chip. In addition, finesgraulticore chips come with
architectural innovations such as special purpose prioageskements and novel intra-chip
interconnection devices. A large number of cores togetlitdrintra-chip communication
networks may provide the intra-chip parallelism and banltlwrequired to tolerate the
impact of limited off-chip memory bandwidth.

Table 3.1 shows some examples of many-core architectuaearth already avail-
able in the market or will be available soon. These processave three common fea-
tures: (1) the processing elements are much simpler thamaneocial-off-the-shelf mi-
croprocessor; (2) the processing element design is usgedised towards an application

domain; (3) while on-chip bandwidth is enormous, off-chgmdwidth remains limited.

3.3 Cyclops-64 Architecture
This research uses Cyclops-64 (C64) to illustrate the ssthat many-core archi-

tectures are either facing or will face in the near future.
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Figure 3.1: Cyclops-64 Computing Environment

Cyclops-64 (C64) is a flexible special purpose supercompotaprised of a host
connected to a C64 computing engine by a Gigabit Ethernetankt as shown in Fig-
ure 3.1. The host system (shown as consisting of a numbentfatmodes and front-end
nodes) supports application development and program ggacas well as system ad-
ministration, monitoring, and boot. The file system, whichymalso contain multiple
(external) file server nodes, provides file support for thd €@épercomputer. The C64
back-end consists of 13,824 C64 blades arranged2ih a 24 x 24 logical configura-
tion, see Figure 3.2. The peak performance of the C64 congatigine will exceed one
PetaFLOPS [17].

C64 nodes are arranged in a 3D-mesh network. A fraction ckthedes, labeled
as 1/0 nodes, use the Gigabit Ethernet port (present in adl €6ps) to connect the
C64 supercomputer to the host and external file systems. Eaamode will service a
number of C64 nodes (called compute nodes) and relay rexjaadtdata between the
compute nodes and the host and file server systems. The I/€s@odl compute nodes
communicate via packets over the 3D-mesh network only. BBisnesh provides the

high bandwidth necessary for inter-node communicationmmimg application programs.
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Figure 3.2: Cyclops-64 Supercomputer

There is a separate control network that connects the Cédmsyts the host sys-
tem. This control network carries commands from the comioales to each C64 node.
A C64 node attaches to this control network via a special camaation port. The host
system uses this control network to initialize the C64 systaonitor its status while pro-
grams are in execution, and reconfigure and restart C64haftdware failures. Details of
the initialization and configuration procedures are notftloeis of this research and will
be discussed elsewhere.

Each C64 blade consists of a C64 chip, external DRAM, and al si)maount of
glue logic, as shown in Figure 3.3. A C64 chip employs a mrdtpssor-on-a-chip ar-
chitecture containing 80 processors. Each processoriosriteo thread units, a floating-
point unit, and two SRAM memory banks of 30KB each. A thread isra simple 64-bit
in-order RISC processor core with a small instruction sehiéecture operating at a mod-
erate speed. In a C64 chip, there are 16 32KB instructionesa@ach shared among five
processors. Each group of 4 instruction caches share aargssrt. In a C64 chip archi-

tecture, there is no data cache. Instead a portion of eactvBitdk can be configured as
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scratch-pad memory. Such a memory provides a fast tempstargge to exploit local-
ity under software control. Processors are connected tossbar network that enables
intra-chip communication, i.e. access to other processo€mory and off-chip DRAM,
as well as enabling inter-chip communication via two comioation devices, called the
A-switch and B-switch. The A-switch and B-switch conneatle&64 chip to its nearest
neighbors in the 3D-mesh. The intra-chip network also ifatéds access to special hard-
ware devices such as the Gigabit Ethernet port and the domtiwork interface attached

to each C64 node.
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Figure 3.3: Cyclops-64 Blade
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Besides its cellular organization, four distinct hardwdeatures distinguish

Cyclops-64 from other general purpose processors:

e The computation to on-chip memory (160/4.6MB) and compamato off-chip
memory bandwidth (160/16GBps) ratios are much larger thandommercial mi-
croprocessor. That is why we consider memory bandwidth ecegasource and

thread units rather inexpensive.

e Execution is non-preemptive. While running on user stategraext switch into
supervisor state might happen whenever an exception ocelagever, this is in-

tended as a protection mechanism only. In other words, thevilD8ever interrupt
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the user program execution unless the user explicitly deisnan (by executing a

supervisor call) or an exception occurs.

e There is no hardware virtual memory manager, which meansiémory hierarchy
of the C64 chip is exposed to the programmer. Processorsicantlg address any
memory location of the non uniform shared address spaceefbtmg the on-chip

and off-chip memory banks within on a chip.

e In the C64 chip architecture there is no data cache. Instamrtion of each
SRAM bank can be configured as scratch-pad memory. Such a m@mvides a

fast temporary storage to exploit locality under softwaretool.

Although the C64 has a special purpose ISA, for this reseaionly rely on
features we believe will be mainstream in future high denséioore architectures. In
particular, we take advantage of the following two key feasuof the C64 architecture:
(1) an instruction set architecture design that incormsrafficient support for thread
level execution and a set of hardware supported in-memanyiatoperations; (2) the
ability to configure a portion of every SRAM bank as scratchpaemory, providing a

fast temporary storage to exploit locality under softwaretool.
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Chapter 4

CYCLOPS-64 SYSTEM SOFTWARE

The Cyclops-64 (C64) project questions fundamentally th&bility of conven-
tional operating systems to achieve high performance. Dosyzecific application ex-
perts who have participated in the conception of all asp#dtse system software for the
C64 supercomputer mandated that Linux was not adequatdr diiegious experience
with parallel applications that did not scale well for varsoreasons motivated us to de-
velop a standalone Thread Virtual Machine (TVM) from sdnatts implementation in
the form of the TiNy Threads (TNT) library had the clear golhlbtowing applications to
achieve full resource utilization [23].

The C64 programming environment and the first implememnadiothe TNT li-
brary have been in production use for the past two years. khame 15,000 programs of
various sophistication levels have been ported to, andamehted on, the C64 architec-
ture, and successfully tested in both simulation and enongiatforms. The experience

and feedback from the C64 community can be summarized asvisl|

e For flexible special-purpose architectures such as C64fanugh-end comput-
ing systems in general, a radical departure from the comvaltOS is now being
seriously considered. High performance applications xoiusively on several
CPUs for extended period of times and require as little gison as possible from
the OS, let alone from other users. Single-user operatiatgsys implemented as
light-weight kernels that achieve full resource utilipatiby a single running pro-

cess will be commonplace in the near future [24, 17].
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e A wide range of issues from virtual memory management togetain between
concurrent processes need to be revisited. For an apphdatreceive full resource
utilization, the system software must be non-intrusiveppligations. There should
be no observable degradation in performance for applicatibat do not request

services from the runtime system.

e As long as a familiar programming environment is providedh® user, applica-
tions do not require software virtualization that adds tayef software that are
not strictly required. For instance, the complexity of autswitching on a con-
ventional OS that is needed for multitasking is unnecess@gn a single process

application runs exclusively on a processor.

e Modern parallel programming languages exploit paralelisy means of multi-
threading. In some cases, a fairly large number of threaslsraated by the appli-

cation regardless of the number of processors or procest@nients available.

4.1 System Software Architecture

In many supercomputing projects, when an OS such as Linuariegto a new
architecture, a great deal of resources are spent trimrhie@tS’s functionality. The
objective is to ensure that services that are not strictjyired interfere as little as possible
with the applications. This reduced functionality resuits lower computational noise,
which measures the degree to which an application is distuldy the asynchronous
execution of daemons and other OS processes.

The C64 architecture does not support preemption or viruginory manage-
ment. These features allow the design of a non-intrusiveesysoftware. But they are
also essential aspects of a conventional OS. If portingamarting an OS to a common-
off-the-shelf microprocessor architecture requires mmrable effort, porting and trim-
ming an OS to the C64 architecture without the hardware feataxpected by the OS

would be formidable, to say the least.
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The C64 system software was designed taking into accourtigtdwvare archi-
tecture of the C64 supercomputer and the lack of a conveaitigmerating system for
the C64 architecture. In addition, to achieve full resourtiBzation, we decided that
only services that are performance critical (from the aggion standpoint) should run
on the C64 back-end. These services are provided by the TNdad@hvirtual Machine
described in Chapter 5. As a result of this design decisitanl/@® operations are shipped
to the front-end, for instance. The standard C library piesithe programmer with a
standard I/O interface. However, when a system call is éeelcd’ NT encapsulates the
call arguments into a request and sends it to the front-emmite @he file I/O operation
is performed, the host sends the results back to TNT, whieltlean forwarded to the
application.

The remainder of this chapter highlights the features ofd64é system software.
Note that all the components described in the next sectiodsiding the C64 toolchain,
run on the front-end cluster. TNT, the C64 Thread Virtual Kae, together with the stan-
dard C library and the communication libraries, are the @olynponents that run on the
C64 back-end. This ensures that applications do not experiebservable degradation
in performance if they do not request any service from TNT affamiliar programming

environment.

4.2 Host Software

This section outlines the system software that is specifithéohost, i.e., that
runs on the front-end cluster. We refer to it as the host cbisftware and its three
main components are: job scheduler and launcher, resousicagar and host to C64

communication.

4.2.1 Job scheduler
Like in other large computing systems [8, 48, 36, 56], thel gbshe job sched-

uler is to maximize the utilization of the computing systeynrbinimizing waiting and
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idle times. On C64, job scheduling supports both interacéimd batch modes. A C64
system may be partitioned into development and productatians. For a fast turn-
around, the development partition may be used interagtiviile the production parti-
tion is restricted to batch submission. In interactive madeers are granted access to a
small number of C64 nodes for the purpose of debugging atuorg their applications.
Batch jobs that users submit are put into a job queue by theegqeanager process. Cer-
tain parameters are associated with each job, includingifyreind resource requirements
such as number of C64 nodes. Every time nodes in the proauygtidition are released,
the job scheduler wakes up and decides which job runs nertd&hbision is made based
on the list of parameters submitted with the job as well asimenfactors such as time
waiting on the queue. In addition, the scheduler invokesaagrhent algorithm that de-
termines the set of C64 nodes assigned to run a job. Placeoemiints for faulty nodes

and guarantees the number of nodes that the user requested.

4.2.2 Resource manager

A resource manager is deployed to manage the system respuncleiding C64
and front-end nodes. Its objective is to minimize systemmtone due to hardware fail-
ures and hence, to improve system utilization. On a systeto@plex as the C64 com-
puting environment, the sources of failures are numerous. irfStance, a thread unit,
floating point unit, or memory bank of a chip may be bad. Anrernthip may be inacces-
sible due to a malfunction of the A-switch or some link of tH&-Biesh may not work as
expected. The C64 system software and the resource mamagg@rticular, detect and try
to work around all these and many other issues. For instahb®ot time each C64 node
is thoroughly tested to determine its aptitude to run prograC64 architecture provides
a hardware mapping table (accessible to the resource nranaly® where bad compo-
nents are marked and effectively removed from the set of@elements. The resulting
chip with a reduced number of resources is still eligibledmmputation. Similarly, faulty

nodes and links may be assigned to partitions allocatedtgohs. However, these may
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be avoided by means of a routing algorithm. Given the nodddiaks status information
generated by diagnostics programs run under the resourcagaacontrol, the role of
the routing algorithmis to find at least one path between amyd@64 nodes in a partition
and among C64 and front-end nodes. The ability to remainadioeial despite hardware
failures is unique to the C64 architecture and provides &efbsctive solution with un-
parallel efficiency among common off-the-shelf micropissms-based supercomputing
systems.

Additionally, the resource manager maintains a centralluege, which provides a
reliable and comprehensive view of the system. Such infoaomaimplifies the design of
the system software. For instance, the job scheduler regjthe knowledge of bad chips
to ensure that the user requirement for a minimum number dfimg nodes is met. In the
event of a hardware failure, for instance a C64 chip stopgsoreding during the execution
of a program, this view of the system allows recovery in mmmtime. As soon as a
node within the partition where the job was running is idiéedi as faulty, the remaining
C64 nodes are moved again to the pool of available resouxmie that while the status

of a partition is verified, other jobs may be assigned to oplaetitions independently.

4.2.3 Hostto Cyclops-64 communication

The C64 supercomputer is attached to the host system theonghber of Giga-
bit Ethernet links. These links, in addition to the 3D-mesipport all the communication
between C64 and front-end nodes. Therefore, system sefthlevelopers are required to
handle the specifics of both Ethernet and A-switch prototmtsarry out any communi-
cation successfully. To avoid this trouble a uniform commaton protocol layer, called
the Cyclops Datagram Protocol (CDP), is added. CDP provadgi®bal address space
across the front-end host and the C64 back-end. Based ondppR;ation level proto-
cols are implemented, including file 1/0, debugging, perfance monitoring and host to

C64 remote memory communication. For instance, when a C@4 atiempts to open a
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file, a request is shipped to the front-end in the form of a CBEkpt. At the host, a dae-
mon performs the operation on behalf of the back-end andssimedresult (file handler)
back to the C64 node where the 1/0O operation originated. Té# ¢dmputing engine
always starts file I/O operations. However, there are sesvibat the front-end initiates
instead. For instance, when a job is scheduled to start égacon a set of C64 nodes,
the job scheduler contacts the process control threadmgrom each C64 node and trans-
fers among other information the program’s image, the useér@enment, command line
parameters, etc. All this data communication relies on the @rotocol as well.

When file I/O processing is expected to be intensive, it wowtbe judicious to
allow the C64 side to drive the computation. That would resuhumerous 1/O requests
being shipped to the front-end that could easily make theratt links the bottleneck of
the entire system. To cope with this situation, a novel camgyaradigm is supported, in
which an application consists of two processes: one runoimte front-end, another on
the C64 back-end. The former is responsible for I/0O and takes of preprocessing and
off-loading computation to the latter, which accomplishies computational intensive
part. Once computation is done, if any post-processingdsired the front-end will
handle it. We enable this scenario with a remote memory tipesalibrary (RMEM) that
facilitates inter-process communication (between hodtGé¥ engine). According to our
current model, the application part running on the frond-eluster sends data to (push)
and gets results from (pull) the C64-side. All the commutiicaand synchronization

primitives provided by the RMEM library are implemented op bf CDP.

4.3 Cyclops-64 Toolchain

Figure 4.1 illustrates the software toolchain currentlgiable for application de-
velopment on the C64 platform. The C compiler has been pdrted the GCC-4.1
suite. The assembler, linker and other binary utilities la@sed on binutils-2.18. To
fully exploit C64 multi-layered memory hierarchy, the toleéin is designed to support

segmented memory spaces that are not contiguous. In othidswaultiple sections of
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Figure 4.1: Cyclops-64 Software Toolchain

code, initialized, and uninitialized data may be allocatreéach memory region, just like
in some toolchains for embedded processors. To direct theation of sections, prag-
mas are provided to specify the memory areas where the usdd like to place certain
variables or procedures. For instance, frequently useal statictures can be put in the
scratchpad memories, closer to the processor/thread imgeneral, applications should
be designed keeping in mind the on-chip and off-chip mensdatency and bandwidth,
so that they make the best use of the memory. The currenti@olevith pragma support
for segmented memory spaces is the first step towards this goa

The standard C and math libraries are derived from thosevitimé..16.0. Func-
tions (libc/libm) are thread safe, i.e. multiple threads call any of the functions at the
same time. Nonetheless, mutual exclusion is guaranteetfibiget spin locks. In addi-
tion, memory functions have been optimized, taking intcoaict the memory hierarchy
and C64 ISA support for multiple load and store operatioas take more efficient use
of the memory bandwidth.

The TNT microkernel/runtime system library, discussed étad in Chapter 5,
provides the software and application developer with thectionality to write multi-

threaded programs: thread management, support for mutalaiséon, synchronization
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among threads, etc. In order to achieve high performancscaidbility, the implementa-
tion of such functionality tries to match the architectunelerneath the microkernel/RTS
as closely as possible, as explained in the next section.

The CNET communication protocol is also part of the microkér This software
component controls the A-switch, and supports SHMEM, a sided communication
library, on top of it. SHMEM provides a shared global addregace, data movement
operations between locations in that address space, actirsyrization primitives that
greatly simplify programming on a multi-chip system suclC&gl.

To carry out our research until a hardware platform is atglawe developed
FAST, an functionally accurate simulator of a multi-chipltithreaded C64 system. The

following section explains the FAST simulator.

4.4 FAST: Cyclops-64 Architectural Simulator

FAST is an execution-driven, binary-compatible simulaiba multi-chip mul-
tithreaded C64 system. It accurately reproduces the fomatibehavior and count of
hardware components such thread units, on-chip and gff«ct@mory banks, and the
3D-mesh network, as shown in Table 4.1. The actual numbemaflated chips is lim-
ited for practical reasons, because the memory correspgmadliall the chips needs to be
allocated in the host machine.

Although FAST is not cycle accurate, we have shown that isisfui for perfor-
mance estimation [16]. In addition, FAST played a criticalerin the system software
development process as it supported all C64 system softiesign, development and
testing for the past four years and helped in the verificatithe C64 logic design.

We developed FAST according to a modular approach, suchatiditional fea-
tures could be easily incorporated into the existing designhelp the architecture team
with the verification of the C64 chip design, the simulatoe@xes instructions (4.4.1),
models the architecture exceptions (4.4.2), reproduce€64 memory map (4.4.3) and

produces histograms of the instruction mix as well as dedaitaces of all instructions
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Table 4.1: Simulation Parameters

Component # of units | Params./unit

Threads 160 single in-order issue,
500MHz

FPUs 80 floating point/MAC,
divide/square root

I-cache 16 32KB

SRAM (on-chip) 160 30KB

DRAM (off-chip) 4 256MB

Crossbar 1 96 ports, 4GB/s port
A-switch 1 6 ports, 4GB/s port

Fetch ¢ . . . ‘
1 X 1 1

‘ PIB }—>‘ Decode }—h Rngllster T" ALU %’
! e 1 [

Mem

Commit

|I-cache

Memory

DRAM

SPM ‘ Global

Figure 4.2: Four-Stage Instruction Pipeline

executed (4.4.4). For the purposes of early system andcapipln software design and
evaluation, FAST also accounts for memory and interconcaatention (4.4.5), and sup-
ports intra-chip communication through the A-switch devi4.4.6). Finally, an overview

of the simulator internals is provided (4.4.7).

4.4.1 Instruction execution

FAST simulates the four-stage pipeline employed in the C@&hitecture, as
shown in Figure 4.2.

At the first stage of the pipeline, an instruction (see Tal®} 4 fetched from the
program instruction buffer (PIB) and decoded. FAST may aatdor the access to the

PIB and, should a miss occur, the subsequent delay whilegteiction is read from the
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Table 4.2: Cyclops-64 Instruction Set Summary

Core Integer and Branch Floating Point
Load, Store Add, Subtract
Load, Store Multiple Multiply, Divide
Add, Subtract [Immediate] Multiply and Add
Multiply, Divide Conversions
Compare [Immediate] Square Root

Trap on Condition [Immediate]
Logic [Immediate]

Shift [Immediate]

Shift left 16 then OR immediat
Insert, Extract

Move if Condition

Branch on Condition

Branch and Link

112

Exotic Control

Bit Gather (permute bits) [-Cache Invalidate
Count Leading Zeros Move From/To SPR
Count Population Return from Interrupt
Parity Sleep

Load then Op Stop

Move Indirect (register-register) Supervisor Call
Multiply and Accumulate

instruction cache or memory. Whenever the branch prediésioncorrect, execution in
a thread unit stalls for three cycles while the pipeline istied. However, FAST does
not reflect the operation of the branch predictor and regaltdsonditional branches as
correctly predicted.

In the second pipeline stage, the instruction input opesame read from the reg-
ister file. For all the C64 instructions, except the floatingtiply and add (FMA), one or
two register operands are read in one cycle. FMA instrustitave three input operands;
hence, an extra cycle is required to read the third operamm she register file has two

read ports.
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In the third stage, the instruction is executed. RISC-lik&riuctions such as inte-
ger, floating-point, branch and memory operations are nealdélased on execution times
expressed by /d pairs, wherer is the execution time in the ALU, andrepresents the
delay before the result of the instruction becomes avalalvistruction timing reported
in Table 4.3 is based on information provided by the C64 clegigh team. For instance,
signed integer division is said to take one cycle in the ALUL & subsequent instruction
will not be able to use the result until 69 cycles later. Dgrthis delay, execution of
independent instructions can proceed normally. Howefénei result of an instruction
is to be used by another instruction before it is availathle,gipeline will stall. It is the
compiler and programmer’s responsibility to cover thedaydeas much as possible with
the appropriate instruction scheduling.

The result is finally committed in the fourth stage if no exo@p is generated.
Otherwise, a context switch causes execution to contirwune fhe address specified by the
interrupt vector. When the results are to be written, caisflicay occur, since the register
file has two write ports. However, these events are not eggdaothappen frequently and
FAST does not account for them.

In terms of instruction execution, FAST allows thread umat$etch, decode and
execute instructions independently, following the segeeof events dictated by each
thread’s instruction stream. However, care needs to bentikesome special instruc-
tions. The sleep instruction, the wakeup signal, the itltezad interrupt, etc., all imply
a synchronization between threads. For instance, a thneidwhile asleep, does not
execute any instructions. During this time, the simulatdirvot update its clock counter.
When a wakeup signal is received, the clock counter is sdtabdf the remote thread
that executed a store in the wakeup memory area (plus somg) déb handle these syn-
chronizations, threads will commit instructions once timewsated chip clock reaches the
time point at which the instruction is executed by the threbdother words, although

instructions are executed asynchronously, they are caeuhit a synchronized fashion.
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Table 4.3: Cyclops-64 Instruction Timing

Instruction type x| d
Bit gather 11
Branches 2| 0
Count population 21 0
Integer multiplication 1| 6
Integer division signed 1|69
Integer division unsigned 1|68
Integer remainder signed 1|70
Integer remainder unsigned 1|69
Move indirect register 3/ 0
Floating add, subtract and conv. 1] 5
Floating multiplication 1| 6
Floating multiply and add 111
Floating divide double 1|63
Floating divide single 1|34
Floating square root double 1|62
Floating square root single 1|33
Floating mult. and accumulate 1| 6
Memory operation (local SRAM) 1 2
Memory operation (global SRAM) | 1 | 31
Memory operation (off-chip DRAM) 1 | 57
All other operations 1, 0

4.4.2 Exception handling

30

Exceptions are thread-specific events. Some are causedthyadtions and trigger
what we call synchronous interrupts that cannot be disabled instance, an attempt
to execute an instruction with an invalid opcode generatetlegal interrupt. Others,
known as asynchronous, are caused by events such as a tameraadd can be disabled.
While disabled, only the first exception of each type gemeréty a sequence of events is
held pending; subsequent ones are lost. Throughout thedtisin’s execution, multiple
exceptions of both classes may occur. FAST checks for excepat the end of the

execution stage. Before the results are written, if one areneoabled exceptions exist,




FAST generates an interrupt according to the priority oggercified by the architecture.

4.4.3 Segmented memory space

The C64 chip hardware supports a shared address space malbdeichip SRAM
and off-chip DRAM banks are addressable from all threadsfimibcessors within a chip.
That is, all threads see a single shared address space.

Architecturally, each thread unit has an associated 30KBNBank. Each mem-
ory bank can be partitioned (configured) into two sectionse oalled the “global” (or
“interleaved”) section, the other the “local” (or “scrapEd”) section. All such global
sections together form the (on-chip) global memory in aarieived fashion that is free
of holes and uniformly addressable from all thread unitgshéligh scratchpad memory,
global memory and off-chip DRAM memory are addressable famythread within the
chip, the access is not uniform. Besides having differeenieies, these three memories
have a separate address space, resulting in a three-levatdiiy. Furthermore, there
is no virtual memory manager in the C64 architecture, hetime ,memory hierarchy is
directly exposed to the programmer.

The FAST simulator accurately reproduces the C64 memorylbgamplement-
ing the above-mentioned, non-uniform shared address sjiadso includes the address
upper limit special purpose registers (AULX) that define highest existing location in
scratchpad memory, global memory and DRAM memory, respegtiFAST also imple-
ments three protection boundary special purpose regig@s). These registers define
regions in scratchpad, interleaved, and DRAM memory thatardy be written in su-
pervisor state, which effectively provide a basic mechartis protect the kernel against
il-behaved programs. In FAST, all memory-specific paranseteuch as the number of

banks, size of each bank, latency, and bandwidth, are easifjgurable.
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4.4.4 Execution trace and instruction statistics

Given the appropriate command line option, the toolset gg¢as the execution
trace of a program. There are two mechanisms to select thigtisns that are to be
stored in the trace. The user can either specify the timevaitén clock cycles) for which
the program execution is to be traced, or enclose the irtgingcto be output to the trace
within TraceOn/TraceOff macros. These macros access hitegted special purpose
registers (SPRs) that control the simulator’s functidgabut are not present in the C64
chip design. The output, consisting of a text file per activead on the C64 system,
contains detailed information such as clock cycle, ingiomcexecuted, source and target
register values, address of the memory location touchetidynstruction, if applicable,
and specific information regarding events that could havayee the execution of the
instruction (contention in the crossbar network, operavichmailable yet, etc).

FAST may also collect instruction statistics over an exiecunterval and produce
histograms of the instruction mix. Similar to the procedaxilable for tracing, the
user can specify an interval in clock cycles or use Statstat§Sff macros to start/stop
collecting statistics, respectively. A combined reportdach node, as well as individual

reports for all active threads, are generated.

4.45 Memory and interconnect contention

One of the latest additions to the FAST simulator is a mochaéaccounts for the
contention in the crossbar network and in the memory system.

Figure 4.3 illustrates the data path between processorsnangory banks on a
C64 chip. Every memory instruction executed on a processaits in a network packet
delivered by the crossbar network to the appropriate merank (global SRAM or off-
chip DRAM). For load operations, the memory replies withtfweo packet containing the
data retrieved from memory.

In order to obtain reasonable accuracy without increasiagruch the simulation

time, FAST models the following sources of contention.
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Figure 4.3: Interconnection to the On-Chip Crossbar

Packets issued by threads on the same processor are quea&dstot FIFO (pro-
cessor buffer) until they are retrieved by the crossbar.thiraad issues a memory

operation when the FIFO is full, the pipeline will stall urgpace is available.

The crossbar retrieves packets from the input ports andedslpackets to the out-
put ports, one per cycle. If at the same cycle, two packettodre delivered to the

same output port, the crossbar blocks one of them arbitraril

Between the crossbar and each memory bank, there is anest@rFO (memory

buffer) where packets are held until processed by the meridingnever this buffer
becomes full, the crossbar stops delivering packets tal#stination. At the same
time, it stops retrieving packets from any input that triessend packets to the

blocked output port.

Memory latencies are also taken into account. SRAM memank$aan perform a
load or store operation every cycle, i.e., 4GB/s per bankei&4s DRAM memory
can sustain a much lower bandwidth. DRAM memory consistewof banks, and
each bank is subdivided into four subbanks. Subbanks caitseequests simul-

taneously, one every 57 cycles, on average. While a memolyesik is in service,
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any incoming request is held pending in the memory buffeer&fore, the DRAM
bandwidth is 2GB/s for single loads and stores. For multii@dasfers, using load
multiple (LDM) and store multiple (STM) instructions, theRIBAM bandwidth is
16GB/s instead.

4.4.6 A-switch device

In FAST, the functioning of the A-switch communication dewiis simulated at a
functional level only. When a chip has an A-switch messagetal, the simulator copies
the whole message directly to the destination node. In etbeds, the simulator does not
model the details of all the hardware mechanisms involvéxhimsferring packets, double
word by double word, through the 3D-mesh network.

In addition to not accounting for the interaction among npletC64 chips, FAST
does not account for the interaction between the A-switchtlaa crossbar network. Send-
ing or receiving messages via the A-switch does not causdiahybance in the crossbar
network. Therefore, performance estimations obtained BST for multi-chip simula-

tions should be regarded as less accurate than singleiahifasions.

4.4.7 Simulator internals

The simulated C64 system starts running when one of the these simulator
functions is called. To maximize performance, each fumcsipecifically handles a C64
system consisting of a single processing core, a C64 cHipdapulated, or a system built
out of several nodes. Therefore, the decision is simplydasghe system configuration.

In multi-node simulations, the main function starts withoap that iterates over
all the active threads on all the nodes. Each thread uninatieto execute an instruc-
tion. For a new instruction, the simulator calls functioesponsible for the instruction
fetch, instruction decode, read the input operands fronragester file, and instruction
execution. If the thread unit is asleep, stalled waitingaioroperand or due to a resource

hazard, or waiting to commit the previous instruction, iedmothing but return.

34



Back in the main function, the chip clock is moved forwardtjeanough to allow
one thread unit, at least, to commit the current instructidnce the clock is updated, the
crossbar and memory banks proceed to flush packets and mepengtions that are to
be performed by this time.

Then a second loop iterates over all the threads, regarafdbeir status. First,
thread units check whether an exception occurred, and ifljttde corresponding inter-
rupt is serviced with the appropriate context switch. If nterrupt was triggered, they
try to commit the last instruction. At this stage, threadspare the chip clock with their
own internal clock. When the execution on the chip reachedithe step at which a
thread can commit an instruction, the results are writtehe@vise, the thread waits.

Finally, after the status of the A-switch is updated, executeturns to the begin-
ning of the main loop. The process is repeated until thredts on every node execute
the STOP instruction in supervisor state.

To simplify the communication among components of the satau] the repre-
sentation of the simulated C64 system is kept in a singleifayél data structure. At
the chip level, it contains information regarding threadsrfloating point units, on-chip
SRAM and off-chip DRAM memories, I-caches, the crossbar ehoahd the A-switch.
At the thread level, it accounts for general, special pugpaad accumulator registers, in
addition to timing information as to when the value storea igeneral purpose register
will be available, the last decoded instruction, programnter, exception flags, thread

status, and a third-level data structure with statistiesoers.
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Chapter 5

TNT: CYCLOPS-64 THREAD VIRTUAL MACHINE

In this chapter, we present the design and implementati®iNyf Threads (TNT),
the Thread Virtual Machine for the Cyclops-64 architectW highlight the features of

TNT as follows:

e TNT replaces the conventional OS with a custom-made kemstiead of trimming
a conventional OS such as Linux, the C64 kernel and the TNarjbhave been
implemented from the ground up. Only the functionality tisatrucial to achieve

and sustain high levels of application performance has bedumded.

e TNT is a non-intrusive runtime system: TNT is implemented aser-level library
that manages the hardware resources directly. TNT suppontsn-preemptive

thread execution model needed for applications to achigl/essource utilization.

e TNT provides an efficient Linux-like programming environnte TNT relocates
services to the user-layer to simplify the runtime softwareéironment and to make
it more efficient. TNT also supports a familiar fork/join gramming API for quick

prototyping of parallel applications.

e TNT supports the development of program execution modéNd: does notimpose
any limitation on the number of threads available for patgdrogramming models
and applications. TNT seamlessly orchestrates dozensaivage thread units and

thousands of virtual threads with high efficiency.

36



Given the C64 special hardware features described in Chapteis not our in-
tention to develop a conventional OS for this platform. é&ast, we focus our efforts on
the design and implementation of a Thread Virtual Machirs grovides a familiar but
efficient application program interface. In the followingcions we discuss the design
and implementation of TNT. In Section 5.1, we present a hegklloverview of the three
key components of the C64 TVM; thread, memory, and synchation models, and we

discuss implementation details in Section 5.2.

5.1 TNT Design

The Cyclops-64 Thread Virtual Machine (TVM) can be seen asnaiiti-chip
multiprocessor “extension” of the C64 ISA. It has been desiyto replace the OS with
a narrow interface layer. Such a layer of system softwaecty manages the hardware
resources and provides an interface that shields the apiplcprogrammer from the
complexity of the architecture whenever possible. Howeawelike a conventional OS, a
TVM exposes those resources that are critical to achievierpeance.

The C64 TVM not only provides an abstraction layer and thdiegion program
interface expected by programmers, it also provides thenoombaseline for future re-
search on program execution models. In Chapter 6, we iltestrow a memory-adaptive
program execution model can be mapped to the TNT TVM to efftbjerun without
interference from the OS.

The C64 TVM includes three components: a thread model, a memodel and
a synchronization model, as well as their correspondingsAPhe thread model presents
thread management issues. The memory model includes thdica@n of the consis-
tency model for the C64 system. The synchronization modstrilges the functionality
to implement mutual exclusion regions, and perform dirbotdd-to-thread and barrier

type of synchronization.
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5.1.1 Thread Model

A program section, namely a function, can be declared agadhtA thread can be
activated for execution by binding to a hardware threadwititin a certain chip, a thread
activation pointer. This activation pointer is defined astilple: <program pointer, state
pointer>. The program pointer is the address specified by the progoaimier associated
with the corresponding hardware thread unit, and the stitgqy is the thread specific
information stored in the C64 memory map (e.g. stack paieter)

A thread activation pointer can also be “global” if the thadendler is extended
with a node (or chip) identifier; a system-wide identifierlod thip where the correspond-
ing thread unit resides. The binding of a thread activaioa thread unit can be dynamic

as long as the system software properly maintains the kgndfiormation.

Thread model API

In the first release of TNT, we provided an interface inspibgdthe popular
Pthread model, to ease application and system softwardogevre’ first hands-on ex-
perience. Initially, the user is responsible for creatitegminating and synchronizing
threads by inserting appropriate function calls to the TNifitime library. Subsequent
releases, in addition to the Pthread-like model, supp@t®uhgle Program Multiple Data
(SPMD) style of execution. In this mode, TNT spawns all thedds available on a chip
when a program starts running. In this mode, the user hagatiendo reserve a number
of thread units for other purposes. The SPMD mode of execwtemands less effort
on behalf of the programmer, since TNT automatically masadjethe threads. We now

describe some functions that are part of the TNT API.
e tnt_create(tnt.desct *th, const void *(*fn)(void *), const void *arg)

Runs the user provided functiohr{) in the next available thread unit. If the thread
cannot be spawned the function returns an error condititheraise it returns 0O
andt h points to a thread unique identifier (descriptor). One patam@r g) can

be passed to the thread function.
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e tnt_exit(const void *rc)

The caller thread terminates its execution returning aecettit code specified by

r ¢ is made available to any successful join with the termirggtimmead.

e tnt_join(const tnt_desct th, void **th _ret)

The caller waits for the target thread to terminate. If iuras successfully, the
value passed tbnt _exi t by the terminating thread will be placed in the location

referenced by the parameten_r et .

e tnt_self(void)

Obtains the descriptor of the current thread.

5.1.2 Memory Model

TNT employs a memory consistency model close to the unaeylgi64 architec-
ture support.

The most widely accepted memory model for the multiprocessxhine is Lam-
port’s sequential consistency (SC) model. Lamport desdrib in the following well-

known statement:

[A system is sequentially consistent if] the result of ang@xion is the
same as if the operations of all the processors were exeauteoime se-
guential order, and the operations of each individual gssgaeappear in this
sequence in the order specified by its program order [40].

The above quote becomes the commonly used definition of sdgleonsistency
in most textbooks and research papers.
Under the current C64 single-chip architecture designfdhewing two condi-

tions are valid:

1. Each processor issues memory requests in the orderdipaibgram specifies.
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2. Two operations designated to the same memory module Mwilelivered to M’s

input FIFO queue in the same order as they entered into tinriet

Notice the latter refers to the time a memory request ent¢ostihe network, not
whenitisissued by a processor, and itis true due to the dqteaicy property of Cyclops’
intra-chip network.

It has been shown that the above two conditions are suffitteanhsure that the
C64 architecture behaves as sequentially consistent@fuse the C64 architecture is
sequentially consistent, there is no need to issue fekeaHdstructions after each memory
operation to ensure StHowever, the hardware cannot guarantee a “Lamport order” of
the accesses to the scratchpad memory space; hence no tsdquarsistency can be
assumed.

Each thread has a private memory region (in scratchpad ny@nvainich can be
used by the thread as its local storage for shared varididésgside in the shared memory
space. The allocation, management and synchronizatiatedele keep the consistency

between shared and private memory is solely the user’s megglbty.

5.1.3 Synchronization Model

TNT synchronization model includes support for severaks/pf synchroniza-
tions. The first type of synchronization is used to ensureualugxclusion of memory
accesses to shared memory locations/space. This can lessegrusing TNT lock and
unlock operations, which are directly implemented using G&rdware atomic test-and-
set operations. Users can declare spin lock variables tisengNT library and operate
upon them with the functions provided for that purpose. Iditoh to spin locks, TNT
supports the mutex construct. It is up to the programmer tidéewhich construct is

more appropriate given the application at hand.

1 In fact C64 has no sync instruction.
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voi d producer(tnt_desc_t consuner_th)
while(1l) {

produce_data();
tnt_signal (consuner _th);

}

©CoO~NO O WNPE

voi d consumer (tnt_desc_t producer_th)
10 {

11 while(1) {

12 tnt_wait (producer_th);

13 consune_dat a();

14 }

15 }

Figure 5.1: Producer-Consumer Sample Program

A second type of synchronization in TNT is introduced to egsrprecedence
relations between operations from two different threadsTNT there is a signal-wait
type of synchronization that will be placed between a paispécific program points
within the two threads.

The sample program in Figure 5.1, based on a producer-carsuodel, shows
the basic use of the signal/wait primitives. Tweoducer thread produces data that the
consuner thread consumes. The latter starts by callimg .wai t and blocks until
a signal from the thread, whose thread handler matches et gs argument to the
function, is received. The former produces a datum and sarsignal to the thread,
whose thread handler is specifiedtoyt _si gnal 's only parameter. Once the signal is
received, theonsuner thread is awakened and consumes the datum.

A third type of synchronization is a collective synchrotiaa in which a group of
threads will participate. For example, a barrier synchzation primitive can be invoked
by a group of threads. Threads block until all participantthie operation (participants
are defined by a single object passed as parameter to therlfarction) have reached
this routine.

The function in Figure 5.2 is part of a TNT program that useamiér primitive.

Multiple threads execute th&or ker routine, which starts with each thread generating
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void worker(int set_id, tnt_barrier_t barrier)
{
produce_dat a_set (set_id);
tnt_barrier(barrier);
if (set_id == 0)
reduce_data_set();

~NOoO OO~ WNBRE

Figure 5.2: Barrier Sample Program

some data according to a thread-specific parameter. Oniteeahta has been generated,
an unspecified operation is applied to it (in our example game type of reduction).
Before the operation can be applied, we must ensure thdirathds have produced the
corresponding data. For that purpose, we caltthe _bar ri er function, so all threads
block until all the threads participating in the barrieragledhe same point before contin-

uing.

5.2 TNT Implementation

The TNT library defines two layers of thread management: Hrevaare thread
layer and the software or virtual thread layer, as shownguife 5.3. The hardware layer
provides direct access to the hardware resources. It manhgéardware thread units
(HT) and implements a non-preemptive, thus non-intrusiveime system. The virtual
layer handles thousands of software or virtual threads @fThehalf of the application.
It provides a familiar fork/join programming API that is gohe to use, yet sufficiently
general to write multithreaded applications. The intagradf these two simple, but well
structured layers of thread managemfentakes it possible to replace a conventional OS

with TNT on C64. We now describe these two layers in more Hetai

5.2.1 Hardware Threads (HT)
The hardware thread units can be idle or active. While idtbr@ad unit remains

asleep so that it consumes little power and does not wasteongemandwidth. Once

2 Less than 3,000 lines of code including header files and cartsne
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Figure 5.3: TNT Flow Chart

active, a thread unit starts running the user program. TraN@ae thread layer supports a
non-preemptive thread execution model. Once a threadtanit sunning, it will continue
until the user explicitly relinquishes control over thegld unit or the program performs
an illegal operation (core dumps).

Upon initialization, each physical thread unit is given tohover its own scratch-
pad memory. The 32 bytes at the beginning of the scratchpaxonyeare reserved for
the hardware thread descriptor. The scratchpad memoryaaimee the reserved area is
allocated for the thread stack. The compiler and runtiméesyshare a general purpose
register, which points to the end of the stack and beginninfp@ reserved area. This
register is used for two purposes: (1) check for stack owesfld2) provide a fast self-
identification mechanism for hardware threads. The TNTalpallocates one stack per
hardware thread unit at boot time. Therefore, when a soéwaead is about to start or
terminate execution the stack does not need to be relocatedh allows faster thread

management.
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5.2.2 Virtual Threads (VT)

The virtual layer receives requests to create and/or textmisoftware or virtual
threads (VT) as required by the application. To manage tlftevace threads, the vir-
tual library defines a thread descriptor that is usuallycaited in the on-chip memory.
If needed, virtual descriptors could be allocated in offspcinemory as well. The vir-
tual layer leverages on the fast self-identification metmayided by the hardware layer.
When a virtual thread is bound to a thread unit, pointers e hhrdware and virtual
thread descriptors are setup to point to each other. In this self-identification of a
virtual thread involves identification of the thread unitdashereferencing the pointer to
the virtual descriptor.

Once ready for execution, virtual threads are bound to harelthread units as
they become available. When this happens, TNT implicitligiss the stack associated
with the thread unit to the virtual thread. This method otktassignment, together with
the fast self-identification mechanism, are the two charasttcs for whichDescriptor
on Stack (DOS) enabled libraries are known to be fast [58]. Upon ttresmination,
TNT reuses the stack, which was assigned to the hardwaidthrét at boot time, to run
the next virtual thread. In that sense TNT is memory efficidwatLazy Stack Allocation

(LSA) + Direct Stack Reuse (DSR) enabled libraries [58].

5.2.3 Thread Scheduling

From a scheduling standpoint, one of the features of TNT lwodting is that
hardware and virtual threads are scheduled at the same 8mee thread execution is
non-preemptive, a virtual thread can only run when a hareitaread unit is available,
and a thread unit remains active as long as there are vitredds to be executed.

The thread scheduling algorithm that the TNT library impdans is as follows.
To launch the user application the runtime system creatédusmhthread descriptor for
the main function of the program and schedules the masteadhio start its execution.

After the main function returns, the master thread is redelegl and starts retrieving work
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with the other hardware thread units. While the programimsimg, the virtual layer may
receive a request to spawn a thread. After creating a désctiphandle the new software
thread, the virtual layer calls the hardware layer, whictedrines whether a hardware
thread unit is available. If a thread unitis idle, virtuatidrardware threads are bound and
execution starts immediately. Because execution is neaptive, any virtual thread
runs to completion on the thread unit initially assignede Tlardware thread is awakened
and given the address of the virtual thread’s entry pointweéieer, if there are not thread
units idle, i.e. all the thread units are active already,ttiread descriptor is pushed to
a queue of virtual threads ready to run. Once a software dhiieshes execution, the
virtual descriptor is recycled and the thread unit is reddrio the runtime system. The
hardware unit then checks whether threads are waiting to Huthere are no threads
ready at that moment, the hardware unit goes to sleep, unttihar request is received.
If virtual threads are pending for hardware resources, #rdvare unit is reassigned to
a new virtual thread and execution starts without suspeitie hardware thread. Once
all the virtual threads have been executed and the hardiwaad units do not have more
work to do, the TNT library returns control to the C64 kernel.

TNT does not implement the scheduling algorithm in a ceizegdl fashion. In
other words, the TNT library does not reserve a thread uiitry out the task of schedul-
ing hardware and virtual threads. To minimize overhead @hdese scalability, the TNT
runtime system allows any thread unit that returns to thémensystem to run the thread
scheduler code. As a consequence, requests for threatboresy arrive at the same
time a hardware thread unit is being recycled and trying terdeine whether software
threads are ready. In some rare conditions, it is possilaettie hardware thread gets
suspended and goes to sleep assuming there are no addiirtunall threads, at the same
time a virtual descriptor is pushed into the virtual readgwg assuming no hardware

resources are available. However, as soon as the appfictiempts to spawn another
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virtual thread, the thread unit that mistakenly remainde will be awakened. In a sys-
tem with only two thread units, the above situation impliésraporary loss of 50% of the
hardware resources. On a multicore architecture such asitb4.60 hardware thread

units, the loss is negligible so did not implement a work acbto avoid introducing

additional overhead in the thread scheduler.
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Chapter 6

MAGMA: A MEMORY-ADAPTIVE MULTITHREADED
ARCHITECTURE MODEL

This chapter defines the MAGMA (Memory Adaptive MultithrealdArchitec-
ture) Program Execution Model (PXM) as the interface betwesers (e.g. programmers
and compilers) of high-level languages, and the implentiemtaf a computing system.
An abstract model describing the operations involved iretkecution of a multithreaded
program on a Cyclops-like cellular architecture illustsathis definition.

MAGMA proposes a memory-centric computing model (as opgose a
processor-centric model), in which the memory latency aaddividth determine the
computing pace. The relationship between processors amtbrgeés organized for paral-
lel applications to effectively manage and tolerate therlay and bandwidth constraints
of the multi-level memory hierarchy present in modern daligomputing systems.

Section 6.1 provides an overview of the MAGMA Program ExeruModel and
illustrates its basic features through program examplescti@ 6.2 precisely defines
the MAGMA Program Execution Model, including the thread raband the MAGMA
operations. Section 6.3 describes MAGMA main features byparing the MAGMA,
EARTH and Cilk models.

6.1 Introduction to MAGMA
This section introduces the basic features of the MAGMA PRaoy Execu-
tion Model and illustrates their use through program exaspl It begins with sim-

ple but illuminating examples (the ubiquitousello World program and simple
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1 #include <stdio. h>
2 #include <magna. h>
3
4 void print_hello(void)
5
6 printf("FromPE %: Hello World!'\n", MY_PE);
7}
8
9 void main(int argc, char xargv[])
10 {
11 int i;
12 for (i=0; i<NUM PES; i++) {
13 SPAWN( print _hell0);
14 }
15 }

Figure 6.1: MAGMA Hello World Program

Producer-Consumer programs) and ends with a small but real applicatidexpy, a
level 1 BLAS routine that computes a linear combination ob tectors. We intention-

ally leave the discussion of the advanced features for @e6ti3.

6.1.1 Thread Execution

Like sequential programs, MAGMA programs haves n function. This func-
tion accepts the same arguments as the sequergtiah. When a program starts run-
ning, the first thread that the system spawns executesdh@ function. However, a
MAGMA program does not necessarily stop running aftai n returns. On the con-
trary, a MAGMA program runs as long as threads spawned by ppécation remain
active, unless the program purposely exits or aborts theutis.

Figure 6.1 shows the code for a simgello World program. In lines 12-13,
the mai n function tries to spawn a thread on each processing elenfighe anachine.
The SPAVWN command starts execution of a thread function on any avaijamcessing
element. The&SPAVWN arguments consist of the name of the function we intend t@neh
the function’s arguments.

In MAGMA, threads cannot return a value. For this reasonnied 4 and 9 the re-

turn type is simplywoi d. When the program creates a thread, MAGMA allocates a frame
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Figure 6.2: MAGMA Thread States

from the heap for a thread handle. However, the handle is medyled until the thread
starts running. Right before that happens, the informadioned in the thread handle,
such as the thread arguments, is copied to the runtime staicka handle is released. In
MAGMA, thread execution is non-preemptive. Once a threadsexecution, it runs to
completion. Unlike a sequential function, a thread can lzeveied without providing all
the arguments at the thread invocation site. However, tfeathwill not start execution
until all the arguments are available, as if they had beeplggwhen the thread was first
invoked. Continuing with théfello World examplepr i nt _hel | o does not have any
arguments. This means that this thread function can stamimg immediately, as long as
there is a processing element available.

The SPAVWN command creates a thread. Arguments will be produced ditifere
or after the call tacSPAW, in which case they can be provided either when the thread
is spawned or afterward using thread synchronization dpasa We say a thread is
logically enabled after values for all the thread parameters have sggplied. Until
then, we say a thread dormant. If a thread idogically enabled, it can be scheduled for
execution. As we explain in Section 6.1.3, MAGMA allows thseuto specify a stronger
condition before a thread can be fired. That is when a threagkisnlylogically enabled
but it is alsophysically enabled.

Figure 6.2 shows the complete state diagram for a MAGMA thres/hen a
thread is invoked and all the arguments are initialized ttinead begins in thenabled
state. However, if an argument is left uninitialized, theetld begins in thelormant

state. Once the values for all the arguments are producdd;naant thread becomes
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enabled and is scheduled for execution. Anabled thread is moved to thactive state
when a processing element, on which the thread runs, isséailWhen amctive thread
completes execution, the runtime system moves it tdeihrainate state.

To help a program determine at runtime the number of proscgsdements avail-
able, as well as the processing element where a thread isngyiMAGMA defines the

following two integer constants:

e NUMPES — The number of processing elements that are executing tgggm.

e MY_PE — The identifier of the processing element{(MY_PE < NUMPES- 1).

These constants are initialized when the program is loadddcannot be mod-
ified throughout the program execution. Given a machine wittumber of processing
elements, thédello World program will output as many “From PE #: Hello World!”
strings as there are processing elements. However, it te gossible that we observe
duplicates of PE values; in other words, a processing elemay print more than one
message. Th8PAVWN command creates a thread on behalf of thélo World program
that starts execution in the first processing element thedrbes available. It is possi-
ble that a thread completes executiorpof nt _hel | o by the time themai n function
spawns another thread. In this case, MAGMA may spawn thensettwead on the same
processing element; that is why we see duplicate PEs. Irtiaddihe Hello World
program runs until all the threads spawned by the progranptate That means that by
the timemai n returns in line 15NUMPES threads would have been executed and output

a message to the terminal.

6.1.2 Thread Synchronization
In this context, synchronization refers to the mechanisah aliows the program-
mer to impose a certain order in which threads execute. Rtamce, if we have two

threads, THREAD_1 and THREAD_2, and there is a data dependence to indicate that
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Figure 6.3: MAGMA Thread Handle

THREAD 1 must produce a datum to be consumedThREAD_2, then we must use
synchronization to guarantee thBHREAD_1 executes and produces the needed datum
beforeTHREAD_2 can start.

In MAGMA, synchronization slots handle thread synchrotiaa and are the key
element of the thread handle. In addition to the thread aibbim pointer, the thread han-
dle has as many slots as the function has arguments, as veetyaEhronization counter,
see Figure 6.3. Arguments for whi@PAWN provides a value are copied into the cor-
responding slot of the thread handle. The remaining sl@&dedt uninitialized, waiting
for the value to be supplied at runtime. These are the synctation slots. In addition,
the synchronization counter is initialized with the numbgsynchronization slots. Only
when the synchronization counter reaches zero is the trelgitile to start execution.
The thread handle shown in Figure 6.3 represents a snapitiat threaddaxpy _f n’s
handle, as shown in Figure 6.6. The synchronization cousiertialized to 2, since the
addresses of vectotisandy are to be provided at runtime. After the address of vector
is provided, the synchronization counter is decreased fohls is the state depicted in
Figure 6.3.

As noted above, threads run to completion. However, befthesad is scheduled
for execution, values for all the thread parameters haveeteupplied. When a thread

is spawned, some arguments may not be available. An arguhmens not provided at
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#i ncl ude <magna. h>

voi d producer (SYNC_SLOT int sync_result)
{

int result = produce()

DATA _SYNC(result, sync_result);
}

voi d consuner(int result)
10 {

11 consune(result)

12}

©CoO~NO O WNPE

14 wvoid main(int argc, char xargv[])

{
16 SPAWN( consuner, SYNC(res));
17 SPAWN( pr oducer, SLOT_ADR(res));
18 }

Figure 6.4: Thread Synchronization

thread creation time represents a dependence that willtlsfiesd at runtime. The pro-
grammer declaresmissing argument by simply using th8YNC keyword instead of the
argument in th&PAWN call. TheSYNC macro accepts an optional parameter. The param-
eter, enclosed in parenthesis, is a keyword used to unigdehtify eachSYNC macro.
After a missing argument is defined, it can referenced with the m&ir®T_ADR. The
compiler pairsSLOT_ADR with SYNC macros to determine the position of thessing
argument within the thread argument list. Based on the aegtisposition, the compiler
computes the offset of thmissing argument slot within the thread handle, and therefore
the address of the synchronization slot needed by subsetimead synchronization op-
erations. When a thread is spawned, the global countertialinéd with the number of
missing arguments. At runtime, as synchronization among threadsrscthe counter is
decreased by one unit every time the value of an argumenb@iped. Once the counter
reaches zero, meaning that all the dependencies have hediedathe thread is eligible
for execution.

The simple program shown in Figure 6.4 demonstrates howddheSYNC op-
erator to define a dependency and synchronization betweethteads.

Line 16: The program spawns the consumer thread. However, no arguspassed
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to the SPAVN command. InsteaB8YNC( r es) indicates the argument is missing,
and it is expected to be provided at runtime. Note thes is not a variable, but
an identifier that the compiler needs to ma8ttOT_ADR andSYNC commands, as
explained below.

Line 17: The program spawns the producer thread. Note there is nagamant either
but the keywordSLOT_ADR(r es) . SLOT_ADR is a built-in MAGMA compiler
command. The compiler pai&.OT_ADR andSYNC macros. When the identifiers
match, the compiler replaceéd. OT _ADR with the actual address of the synchro-
nization slot corresponding to the missing argument. Inexample, the address
of r esul t ’s synchronization slot of the consumer.

Line 3: The keywordSYNC_SLOT precedes the input argument. The purpose of this key-
word is to indicate that the argument is a pointer to a synabkation slot, expected
to be filled in with an integer number.

Line 6: Synchronization occurs between producer and consumeadsirelhe function
DATA_SYNC sends the scalar valueesul t to the consumer synchronization slot.
Once the value is stored in the synchronization slot, theajloounter is decreased.
Since only one argument was missing, the counter becomesama the runtime
system schedules the consumer for execution.

Suppose that in order to solve a problem, it has to be decaedpo® a relatively
large but fixed number of subproblems, let us $ay Let us further suppose that the
results from all these subproblems must be combined ancgegsed all together to de-
termine the final answer. Initially, the declaration of tlemsumer thread function would
have to haveV parameters, one for each value to be produced. Declarirggiduns with
a large number of input arguments is not only cumbersomealsat prone to errors.
To improve programmability, MAGMA supports indexed syrmhization slots that are
defined using the notatior<% ... =*>". The notation attached to a parameter in a
function declaration tells the compiler that the functicashmultiple parameters.The

same notation attached to a function argument tells the dentpat multiple arguments

! The difference between multiple arguments and variableraemt lists is that with
multiple arguments, the number of arguments cannot changedne thread invoca-
tion to another. The MAGMA compiler may translate multipfg@ments to variable
argument lists. However, that is an implementation detail.
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#i ncl ude <magna. h>
#define N (NUM_PES)

voi d producer (SYNC _SLOT int sync_result)
{
int result = produce()
DATA_SYNC(result, sync_result);

}

10 void consuner(int result <xN«>)
11

12 int i;

13 for (i=0; i<N i++) {

14 consune(result[i]);

15 }

16 }

©CoO~NO O WNPE

18 void main(int argc, char xargv[])

19 {

20 int i

21 SPAWN( consuner, SYNC(res<*N«t>));

22 for (i=0; i<N i++) {

23 SPAWN( pr oducer, SLOT_ADR(res<* i *>));
24 }

25 }

Figure 6.5: Thread Synchronization with Indexed Slots

are missing. Finally, the user can also refer to each of ttigistual synchronization slots
with the built-in comman®LOT_ADR. In this case&* ... >"encloses a variable or
constant that specifies the actual synchronization slot.

Figure 6.5 shows another version of tReoducer-Consumer program. In this
example there are multiple producers and a single consuynehsonized through in-
dexed synchronization slots. The following explains the okindexed synchronization

slots in this example:

Line 10: Defines indexed synchronization slots. It declares thewoes thread withiN
parameters.

Line 21: The program spawns the consumer thread. All the argumeptcted by the
consumer are declared as missing.

Line 22: Themai n function spawn producers.

Line 23: Each producer receives a pointer to a synchronization Sha.compiler com-
putes the offset to each particular synchronization slotguhe index .
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Line 7: The synchronization operation does not change to handéxatsynchroniza-
tion slots. After all, the producer gets a pointer to only sgechronization slot.

6.1.3 Data Percolation

The previous examples demonstrated how threads use synzdiion to pass
simple data. MAGMA allows parallel applications to exchargjocks of data as well.
MAGMA provides an expliciBLK_SYNC operation to move contiguous blocks of arbi-
trary size. SimilarlyGATHER BLOCK_SYNC moves blocks of data of arbitrary size but
the data need not be located in a contiguous block. This tiperia described in detalil
in Section 6.2.2. Since this section only covers the basitufes, we will focus on the
BLK_SYNC operation. Even though it is a reduced versiorGATHER BL OCK_SYNC,
BLK_SYNCis more commonly used.

Threads cannot run until they diagically enabled. In other words, threads cannot
start execution until all the data dependencies have beén Bexause threads run to
completion, scheduling a thread while arguments are ngssilhjust cause the thread to
stall at some point in the middle of the computation.

The DATA_SYNC operation copies a scalar value to the target synchroaizati
slot. When the destination thread receives the synchrtoizaignal, the scalar value
is alreadylocal and the thread can be executed without experiencing any detay.
However, when a thread accesses a block of data, i.e., teadrarameter refers to an
array, it may not be wise to fire the thread that is oldgically enabled. If the block
of data is in off-chip memory, the thread will experience tbmmous delays due to the
higher latency of this memory. In a distributed memory systa thread may not be able
to directly access the data located in a different node. &fbeg, the programmer needs
to be cautious withogically enabled threads. Instead of simply providing the pointer to
remote memory where the data block is, whiiatjcally enables the thread for execution,

it would be better to first migrate the data closer to the msitg) element and then
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provide the pointer to local memory. In MAGMA, after this pess takes place, we say
that the thread iphysically enabled.

BLK_SYNC is the operation that handles data block dependencies, rssutes
that a thread is not fired until it becomehysically enabled. BLK_.SYNC takes three
arguments: the source memory area, the number of bytesrisféraand a pointer to
the target synchronization slot. Note that it does not hat@get memory area. To
guarantee that the block of data is lodlLK_SYNC first allocates memory in the level of
the memory hierarchy considered to lloeal to the processing element. After memory
is allocated, the data block is transferred, for instanemfoff-chip to on-chip memory.
Then the target synchronization slot is synced, and so theifin argument is filled with
a pointer to the temporary buffer. At that moment, the thisabt onlylogically enabled,
but it is alsophysically enabled, and now is ready for execution.

Figure 6.6 shows an implementation of ttexpy routine that computes a linear
combination of two vectors, i.e., a constant alpha timesctéoveplus another vectog( =
axx;+y;). Itis a simplified version in the sense that it does not haeariteger arguments
inc, andinc, for the increment between elements of vecto@ndy, respectively. The
code is a straightforward implementation using the iteeaprogramming paradigm to
demonstrate hoBLK_SYNC works.

In this example, we assume that the user can take advantdgerefjularity of the
loop structure and the data access pattern and unifornthyldite the computation among
processing elements. In order to simplify the example arttiouk loss of generality,
we also assume that the length of the vectors is a multiplaehtimber of processing
elements. The main aspects of ttipy implementation according to the MAGMA

model can be summarized as follows:

Line 24: Given our assumption that the vector length is a multiplehaf humber of
processing elements, we evenly divide the computationdhtmks.

Lines 26—31: The main loop of thelaxpy routine spawns twice as many threads as there
are processing elements. Tthaxpy _f n threads each do part of the computation,
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#i ncl ude <magna. h>

daxpy_fn(int n, double al pha, double x[], double y[],
SYNC_SLOT doubl e * done)
{

int i;

for (i=0; i<n; i++) {
y[i]l = alpha = x[i] + y[i];

©CoO~NO O WNPE

10 }

11 RELEASE( x) ;

12 DATA_SYNC(y, done);
13 }

15 scatter_fn(int n, double y reni], double y_loc[])
16 {

17 menmcpy(y_rem y_loc, n*sizeof(double));

18 RELEASE(y_I| oc);

19 }

20

21 daxpy(int n, double al pha, double x[], double y[])

22

23 int i;

24 int chunk_l en = n/ NUM_PES;

25

26 for(i=0; i<NUMPES; i++) {

27 SPAWN(scatter_fn, chunk_len, &J[i*chunk_|en], SYNC(y_local));

28 SPAWN(daxpy_fn, chunk_len, al pha, SYNC(x), SYNC(y), SLOT_ADR(y_local));
29 BLK_SYNC( &x[ i *chunk_I en], chunk_| en*si zeof (doubl €), SLOT_ADR(X));
30 BLK_SYNC( &y[ i *chunk_I en], chunk_| en*si zeof (doubl e), SLOT_ADR(Y));
31 }

32}

Figure 6.6: MAGMA daxpy Program

whereas thescat t er _f n threads will copy the vector back to its original loca-
tion in memory. After alaxpy_f n thread computes its assigned chunk of vegtor
ascat t er _f nthread can start transferring the resultinchunk back. The depen-
dency between threadkaxpy _f n andscat t er _f n is communicated explicitly
to the compiler with the macraSYNC(y_l ocal ) andSLOT_ADR(y_ ocal ).
Note thaty _| ocal is neither a variable nor a constant. It is only an identifiet t
the compiler uses to match tls& OT_ADR in line 28 with theSYNC in line 27.

Line 28: Thedaxpy _f n function expects vectors andy of lengthn. However, these
arguments are defined as missing with @\C macro.

Lines 29-30: Thedaxpy routine knows the address of vectarandy when it spawns
thedaxpy _f n threads. However, these vectors are probably not in locaiong
In order tophysically enable thedaxpy_f n threads, thelaxpy routine invokes
two BLK_SYNC operations to transfer chunks of vectarandy from their current
location (probably in remote memory) to a level of the memurarchy local to
the processing element. Triggered bBlaK_SYNC operation, the system allocates
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some temporary storage, and once the block of data has lmeeidred, it will
synchronize the corresponding slot adaxpy _f n thread.

Lines 8-9: Once chunks of andy are local tadaxpy _f n, i.e., the thread iphysically
enabled, it performs the normddxpy computation.

Line 11: Releases the temporary storage that holds the local comctdnte. The chunk
was allocated by the system as the result BLEK_SYNC operation.

Line 12: Sends a synchronization signal to threadht t er _f n. This thread is waiting
since it was spawned in line 27, for a pointer to the localduffhere the resulting
vector is stored. Note thatcat t er _f n is fired after it has beelogically enabled
since the purpose of this thread is precisely to scatterlgata to remote memory.

Line 17: The scatt er _f n thread copies the results (chunk of vectdrfrom local
memory to its original location.

Line 18: Releases the local copy of vectar

6.2 MAGMA Program Execution Model

MAGMA refers to a multithreading model suitable for largegcmulticore sys-
tems. MAGMA is based on a memory-adaptive model that incates the behavior
of the multi-level memory hierarchy found in modern multie@rchitectures. The run-
time system is responsible for data allocation and mignagmsuring that data Iscally
available (to the processing element) before the computatarts.

The MAGMA Program Execution Model has the following impatattributes:

e Programs are divided into small sequences of instructishih we call threads.

e Threaded procedures or threads are defined like sequant@ldns, with an argu-

ment list just like that of a function.

e Upon thread creation, a small thread handle is allocated the heap. But once a
thread starts execution, the local context is allocateah fitee runtime stack and the

thread handle is released.
e Threads are non-preemptive, i.e., once fired they run to tetrap.
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e There is a single-level hierarchy of threads.

e Data dependencies explicitly identified in the program wetees the execution

order among threads.

¢ In order to satisfy the data dependencies identified in tipdicgiion, the program

instructs the runtime system to percolate data from renmol@cal memory.

6.2.1 MAGMA Thread Model

The MAGMA thread model is based on event-driven (or signalesh) non-
preemptive threaded procedures with dataflow-like syrmahation as opposed to control
flow-driven asynchronous calls. A thread is said tddggcally enabled when the prece-
dence conditions (data and control) are met. However, thiglition is not sufficient.
In MAGMA, a thread is eligible to begin execution once it bewsphysically enabled.
This only happens when all the data referenced by the thsganysically located inlocal
memory, wherdocal memory is determined by the user (programmer and compiler).

To make MAGMA suitable for large scale multicore systems,itiodel considers
a single level of threads, spawned like function calls. lqusntial programs, a function
is called with a set of arguments specified at the functiorsdal. Similarly, in MAGMA,

a thread can only start running when all the arguments hage peoduced. A thread
may have function-like arguments that are also specifiechvithe thread is created. But
a thread may also have arguments that are not specified gidimat These arguments
are expressed as explicit dependencies in the program. éifendencies are to be met at
runtime for a thread to start execution.

More importantly, date dependencies usually refer to dasiding in remote
memory, and needing to be brought to local memory, beforepebation can start. In
MAGMA, the user (e.g. programmer and compiler) guides timtinoe system to allocate
and gather data before an operation can be performed, amdttersdata back once the

work is done. Additionally, the compiler generates codeiassg the data will be placed
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in a local region of memory. Once the data is transferredamal memory, and if all
the dependencies are satisfied, the runtime system astivetehread for execution. But
before a thread starts running, the runtime system fixeshttead’s argument so that it
points to the temporary storage.

In MAGMA, threads are uniquely addressable units referdrimea thread han-
dle. The thread handle is allocated from the heap. But onteead starts running, it
allocates its own local context from the runtime stack atelses the thread handle. The
runtime stack is initialized when the thread is fired andaséel once the thread completes
execution. Therefore, a thread has no previous state wistarts running. In addition,
threads do not share data via a frame in (remote) shared menmstead, all the data
a thread needs is to be passed as arguments. This solutiereimly exploits on-chip
memory bandwidth (an abundant resource especially in nsang-architectures) rather
than relying on off-chip memory (a scarce resource in motgarchitectures).

As shown in theHello World program in Figure 6.1, multiple instances of the
same thread can be created by passing the same function oamu#tiple SPAVN com-
mands. However, each thread is only fired once and it teresnafter execution com-
pletes. On the other hand, because threads are uniquebsadtite units that do not share
data via a frame, the model guarantees that multiple inetaotca thread can be executed
concurrently with no side-effects or data race conditions.

In addition, MAGMA programs, which strictly obey the threfdng rules, are
deadlock-free. The dataflow computational model is knowbeaeadlock-free as long
as the program is “well-structured”. The MAGMA Program Exgon Model is based on
the same operational semantics of dataflow firing rules. #aldilly, MAGMA threads,
which can be regarded as macro dataflow nodes, cannot deadllus is because by defi-
nition, all the data a thread requires is available for tiedt to start execution. Therefore,

it can be proved that “well-structured” MAGMA programs aftecadeadlock-free.
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6.2.2 MAGMA Operations
This section describes the operations supported by the MA®Kkbgram Execu-
tion Model. These can be implemented in hardware, softveara,combination of both,

depending on the multicore architecture at hand.

e SPAWN: Initializes the descriptor of a new MAGMA thread and prasdhe thread
arguments. It also specifies the arguments that are misdatg flependencies),

which are to be resolved at run time.
SPAWN( function_name, ...)

When a program callSPAWN, the MAGMA runtime system allocates a handle for
a new MAGMA thread. The virtual thread is bound to the givenction. The
runtime system fills in the available arguments and leavesetlthat are missing
empty. To specify a missing argument, the user precedescuemientifier (an
undeclared variable) with tHeYNC keyword. The runtime system also initializes a

counter with the total number of missing arguments.

If the thread descriptor does not have missing argumergshtiead is immediately
activated for execution. Otherwise, it remadosmant until values for the missing
arguments are produced. Missing arguments are filled in vaithes produced by
subsequent calls to the MAGMA runtime system. Preciselghsuissing argu-
ments represent the long latency operations that the rergystem will try to hide

using percolation.

The programmer may use the keyw@&@dOT_ADRto refer to the missing argument
of anotherSPAWN function. Both theSYNC and SLOT_ADR keywords require a
unique identifier. The compiler uses the identifier to @NC and SLOT_ADR
macros, and to generate the correct synchronization stiveasl.

e DATA _SYNC: Sends a value to fill in a missing argument.

DATA_SYNC( datum, SLOT_ADR)
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If a data dependency refers to a single datum (i.e. a sindle\as opposed to a
complex data structure such as an arr&®ATA_SYNC provides the value for the
missing argument to dormant thread. Once the value is copied to the MAGMA
thread descriptor, the runtime system updates the depeiedesounter. When the
counter reaches zero, meaning that all data dependenciesdban satisfied and
values for all arguments have been produced, the runtimersyschedules the

thread for execution.

Based on the list of missing arguments in a previ@#WN operation, the
MAGMA compiler automatically fills in theSLOT_ADR argument oDATA_SYNC.

BLK_SYNC: The runtime system begins to percolate a contiguous blbdata of

arbitrary size that a complex data structure requires.
BLK.SYNC(voi d * src, sizet length, SLOT_ADR)

The MAGMA runtime system automatically allocates a buffeni local memory

to store the data to be percolated. Then the runtime systets 8 percolatéength
bytes of data fronsrc to the internal buffer. Once the data is transferred to the
temporary buffer, the missing argumentis filled in with tkleeess of the temporary
buffer. Then the runtime system decrements the dependeocieter, and if it

becomes zero, the runtime system activates the threaddougan.

The MAGMA compiler automatically generates tl8&OT_ADR argument for
BLK_SYNC calls based on the list of missing arguments passedSRAAN func-

tion.

GATHER_BLK_SYNC: The runtime system percolates a non-contiguous block of

data of arbitrary size.

GATHER BLK_SYNC( function_-name, function_arg,
void * sre, sizet length, SLOT_ADR)
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The MAGMA runtime system automatically allocates a buffenfi local memory

to store the data to be percolated. Then the runtime systisrtiva user-provided
function to percolatéength bytes of data fronsrc to the internal buffer. The run-
time system passes this function the argument also provigéde user. Once the
data is transferred to the temporary buffer, the runtimeesydills in the miss-

ing argument with the address of the temporary buffer. Thenrtintime system
decreases the dependencies counter, and if it becomestkzermntime system

activates the thread for execution.

The MAGMA compiler automatically generates tl8&OT_ADR argument for
GATHER_BLK_SYNC calls based on the list of missing arguments passed to the
SPAWN command.

ALLOC_SYNC: The runtime system allocates a buffer from local memoryigto
be used by a MAGMA thread.

ALLOC.SYNC(si zet length, SLOT_ADR)

The MAGMA runtime system allocates a buffer from local meyntar store some
intermediate data needed by a MAGMA thread. Once the busfatlocated, the
runtime system fills in the value of the missing argument amecks whether all
the data dependencies are met. When they are, the runtinersgshedules the

thread for execution.
The compiler fills in theSLOT_ADR argument foALLOC_SYNC calls based on the
list of missing arguments of th&PAWN function.
RELEASE: The runtime system releases internal storage allocatpddwyous func-
tion calls.

RELEASE(voi d * ptr)
Local memory previously allocated with a call &LLOC_SYNC, BLK_SYNC, or

GATHER_BLK_SYNC is returned to the runtime system. The runtime system may

63



keep the information used for bookkeeping of this memorydrnd may decide
to reuse the data in the future. However, the programmeridhmnt rely on this

feature to continue accessing the data after the buffer éas keleased.

6.3 Main Features of MAGMA

In MAGMA, threads are like macro dataflow nodes. They congagequence of
instructions that are executed in a von Neumann fashiorigwvitiead activation follows
the dataflow style. Thread activation (or synchronizatislecoupled from the execution
stage. The former takes place in memory (mainly local menoyywriting tokens into
the synchronization slots of a thread handle. Executiorerfopmed by the hardware
processing elements once a thread is fired. Firing and erecsitages are connected
with a queue. This queue, which the the runtime system sdfiechanages as a FIFO,
holds the threads that once activated are waiting for a gsiicg element on which to run.

Threads are declared like sequential functions with a fan@rgument list. How-
ever, a thread can be spawned without providing values fasarguments. When argu-
ments aranissing, the thread remains inactive until all the data dependsrigwe been
resolved, i.e., values for all the arguments have been peatiuf the argument is a scalar
variable, the value is directly copied into the argument.sWhen the argument refer-
ences a block of data, the system first transfers the datac#éb heemory, then it writes
the address of the internal storage in the argument slot.

As soon as the arguments are available, the thread is redydrecuted. When
a thread is fired, the runtime system reads the argumentstherthread handle and sets
both the thread registers and runtime stack according teytsiem ABI. Then the thread
handle is released and recycled. A thread runs to compledithout incurring any long
latency operations. That is because all the data the thibses has been previously
percolated and ifocally available. Note that unlike pre-fetching, percolatioroat to
gather and scatter data blocks across the different le¥éteeanemory hierarchy, even

before the procedure or function that requires the datésstaecution.
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The remainder of this section illustrates the main featofdgsl AGMA through
program examples. We use three familiar prograRbgnacci, N-Queens and daxpy)
to illustrate the comparison between MAGMA, EARTH, and Gitiodels. All the pro-
grams according to the EARTH model presented in this seetferimplemented using
the Threaded-C language release 2.0 [57], and the Cilk ebemmape coded based on the
Cilk 5.4.6 release [30].

In particular, it is worth noting that MAGMA gives the usektfiexibility to solve
a problem using either recursion or iteration. Thread syorazation (or token matching)
is straightforward once the address of the target argumenissknown. Although the
address is based on the thread handle, and that is only knoruntame, the compiler
calculates the argument slot’s offset based on the locafitime missing argument within
the function argument list statically. As a result, threadsl synchronization slots are
uniquely identified at runtime. This feature supports bathgpamming paradigms with
ease. Additionally, MAGMA percolates data from remote todlomemory, allowing
threads to run to completion without experiencing long gelaln addition to hiding
latency, percolation improves data locality, and in someesafacilitates data reuse, as
we demonstrate in Section 6.3.2.

We useFibonacci as an example of a recursive program that involves little-com
putation to illustrate operations such as thread creatidrsginchronization. The solution
to the enumeration of thB-Queens is also recursive. However, it involves movement
of data blocks and therefore, demonstrates how MAGMA patesldata. The third ex-
ample presents thdaxpy routine. Interestingly, the Cilk implementation uses rsan,

whereas MAGMA and EARTH programs use iteration.

6.3.1 Fibonacci Example
Figure 6.7 shows an example of a recursive sequential C apdaltulateFi-

bonacci numbers. The code is a naive implementation of the matheat&guation for
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1 #include <stdio. h>

2 #include <stdlib. h>

3

4 int fib(int n)

5

6 if (n<2) return (n);
7 el se {

8 int x, vy;

9 x =fib (n-1);

10 y = fib (n-2);

11 return (x+y);

12 }

13 }

14

15 int main(int argc, char xargv[])
16 {

17 int n, result;

18 n = atoi(argv[1]);

19 result = fib (n);

20 printf ("Result: %\n", result);
21 return O;

Figure 6.7: SequentiaFibonacci Program

Fibonacci numbers. However, it serves the purpose of showing therdiffees and sim-
ilarities among the three program execution models. Fg6t6, 6.10, and 6.11 show
three programs that compukbonacci numbers according to MAGMA, EARTH and
Cilk models, respectively.

Since we take the mathematical equationRdoonacci numbers, and use a recur-
sive approach to write the parallel programs, in the threallgh versions there is #ib
function that is called recursively. ifib(n) determines it is not a leaf, it callgb(n — 1)
and fib(n — 2), and adds the results.

Sequential C and Cilk programs are very similar. In fact,dhly differences be-
tween them, besides the inclusion of the library headecfilek . h, are a few keywords:
ci | k, spawn, andsync. When a Cilk program runs on one processor, it has the same
semantics as the C program that results from deleting thek€yiwords. This is called C
elision of the Cilk program.

Of the threeFibonacci parallel programs, the Cilk version is the easiest to un-

derstand. fib is a compact function that resembles the sequential vergittmalmost
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transparent synchronization among threads. On the otimel; MAAGMA has two distinct
functions: fib andsum. fib(n) spawns the threagim and then directs the recursion un-
til a leaf is reachedsum collects the results fronfib(n — 1) and fib(n — 2), adds them
together and passes the result to the: thread spawned byib(n)’s parent. Figure 6.8
shows the call graph fofib(4). Note that all instances éfi b spawn an instance sfum
exceptfib(1) and fib(0). In this case, théi b thread sends the result directly to the
sumthread spawned byib(2). The EARTH model does not have two explicit functions.
However, the threaded procedure contains two fibers. Thiesesfare the counterparts
to the fib andsum threads in the MAGMA program. Additionally, the Threade@@-
compiler translates fibers into functions, although thanismplementation detail.

In Cilk and MAGMA, communication and synchronization ardistinguishable.
EARTH is more flexible because data communication and symekation signals are
handled separately. In EARTH, the data is first written to mgmThen, a fiber is synced
using its synchronization slot.

Both Cilk and EARTH programs declare two local variablesgoeive the results
from fib(n — 1) and fib(n — 2). On EARTH, these variables are allocated from the
frame that all fibers within a threaded procedure share. &geirement for a this frame
prevents EARTH from exploiting the memory closest to thecpssing elements, because
this memory usually is not uniformly accessible. On the otiend, the Cilk compiler
actually breaks the function into two threads, each witlwis stack similar to MAGMA
threads. MAGMA does not need such variables, since thetseard passed directly to
the sum thread. The compiler computes the synchronization slotesdddirectly from
the information that the macrasy NC and SLOT_ADR provide, such as the unique
identifier.

The following explains the details of the MAGMA program shom Figure 6.9

to computeFibonacci numbers and the commands introduced in this example:

Line 5: The arguments tdi b include aSYNC_SLOT to be synced after the result is
computed. The synchronization signal is implicit with tk@dtion result.
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Figure 6.8: MAGMA Fibonacci Call Graph

Lines 7-8: This function call is a leaf (no more recursion). It passesviluen directly
to the SYNC_SLOT result. The threaded procedusaumthat the parent thread
spawned receives this value as eithery.

Lines 10-13: This function call requires recursion. It spawns the thrtbad will receive
the results, and recursively calls theb function twice. One function’s result is
directed tol ef t (sumfunction argumenk), and the other is directed ta ght
(sumfunction argumenty). The compiler pairs eacBLOT_ADR with a SYNC
macro based on matching identifiers, and generates thessdof@ach synchro-
nization slot so that the instancesfafb have places to send their results. Note that
each call receives a slot address to eitheft orri ght, and that thesumthread
requires two values (Line 17) before it can start.

Lines 17-19: Threadsumruns after two values have been received iandy because
both children (Lines 12—13) have sent back their result. fhinead adds andy
together and use BATA_SYNC (on a remote slot) to send the sum to the caller’s
sumthread.
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#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <magna. h>

fib(SYNC_SLOT int result, int n)
{
if (n<2) {
DATA _SYNC(n, result);
}
el se {
SPAWN(sum result, SYNC(left), SYNC(right));
SPAWN(fi b, SLOT_ADR(left), n-1);
SPAWN(fib, SLOT_ADR(right), n-2);
}
}

sun{SYNC_SLOT int result, int x, int y)
{

DATA_SYNC(x+y, result)
}

int main (int argc, char xargv[])
{
int n;
n = atoi(argv[1]);
SPAWN(done, SYNC(res), n)
SPAWN(fi b, SLOT_ADR(res), n)
}

done(int result, int n)
{

printf ("fib(%) = %\n", n, result)
}

Figure 6.9: MAGMA Fibonacci Program

The aspects worth noting of the EARTH program shown in Figut® to compute
Fibonacci numbers, are the following:

Line 4: The parameters to tHa b threaded function include a global handiegul t)
which will receive the result of the function (thé® Fibonacci number); they also
include a slot to be signaled when that result has been cadpiln other words,
r esul t isused for data communication wherel@ne carries the synchronization

signal.

Line 6: Local variableg 1 andr 2 are introduced to receive the results of the recursive

calls.

Lines 8-10: This function call is a leaf (no more recursion). It writeg tralues 0 and 1

intor 1 andr 2 and directly spawns fibdREADY.

Lines 11-13: This function call requires recursion. It calls tki& function twice, with
one result directed to1 and the other directed t02. The macroTO. GLOBAL
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1 #include <stdio. h>

2 #include <stdlib. h>

3

4 THREADED fib( int n, int *GLOBAL result, SPTR done )
5 {

6 int rl, r2;

7

8 if (n<=1) {

9 rli =20; r2 =1,

10 SPAWN( READY );

11 } else {

12 TOKEN( fib, n-1, TO GLOBAL(&r 1), TO SPTR(READY) );
13 TOKEN( fib, n-2, TO GLOBAL(& 2), TO SPTR(READY) );
14 }

15

16 FI BER READY <* 2 %> {

17 PUT_SYNC( r1 + r2, result, done );

18 TERM NATE;

19 }

20 }

21

22 THREADED MAI N( int argc, charx argv[] )

23 {

24 int n, res;

25

26 n = atoi (argv[1]);
27 TOKEN( fib, n, TO GLOBAL(& es), TO SPTR(FIB_DONE) );

28

29 FI BER FIB_DONE <* 1 *> {

30 printf( "fib(%) = %\n", n, res );
31 TERM NATE;

32 }

33 }

Figure 6.10: EARTH Fibonacci Program

converts the local address&s1 and&r 2 into global handles so that the two in-
stances of i b have places to send their results. Note that both callswvedke
same synchronization slIofQ_SPTR( READY) ), and that this fiber requires 2 syn-
chronization signals (Line 16) before it can start.

Lines 16—19: Fiber READY runs after two signals have been received in synchronizatio
slot READY, indicating that both results are readyrith andr 2 because both chil-
dren (Lines 12—-13) have sent back their result. FREEADY may also be spawned
directly (Line 10) if this invocation of the functiohi b is a leaf of the recursion
tree. FibelREADY adds the sub-results together and usesB. SYNC (on a remote
slot) to send the sum to the caller.

The main aspects of the Cilk program shown in Figure 6.11 sifelews:
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#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <cil k. h>

cilk int fib(int n)

if (n<2) return n
el se {
int x, vy;
10 X = spawn fib (n-1);
11 y = spawn fib (n-2);
12 sync
13 return (x+y);
14 }
15 }
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17 cilk int main(int argc, char xargv[])
18 {

19 int n, result;

20 n = atoi (argv[1])

21 result = spawn fib(n)

22 sync;

23 printf ("Result: %l\n", result)

24 return 0

Figure 6.11: Cilk Fibonacci Program

Lines 10-11: In Cilk, when the keywordgpawn precedes a function, the procedure is
executed similarly to a C function call. However, executidnthe parent can con-
tinue in parallel with the child, producing parallelism.

Line 12-13: The parent needs to execwggnc in order to safely use the values that
the child returns. This synchronization is like a local mrrit only waits for the
children spawned by the procedure that execsiasc.

6.3.2 N-Queens Example

Figure 6.13 shows the core routine of a sequential prograndblves theN-
Queens problem. The full source code is provided in Appendix A. Tiw§Queens code
counts the number of ways to plaéequeens on & x N chess board so that none of
them can hit any other in one move under normal chess rulexhé&e a recursive im-
plementation, similar to the previol$bonacci example, but that requires block transfer

operations.
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Figure 6.12: N-Queens Recursion

To solve theN-Queens problem a search function is called that tries placing geeen
in different columns of a given row of the board. When the fiorcfinds a valid position,
it splits the search into two subproblems. One subprobleds &lde new queen to the
chessboard and starts searching the next row. The othes kegpg positions to the
right of the current position. For the original search, thedtion returns the sum of the
solutions to both subproblems, see Figure 6.12.

The sequential C implementation is straightforward. Fana received as one of
the input arguments in line 1, the function tries to find adi@iosition for a queen in the
column range betweest art _col andn, line 6. If the search is successful the problem
is divided into two subproblems as explained above by matkaagrsive function calls,
lines 9—10. Once the two searches complete, the functios thédsolutions returned by
each of the subproblems, line 11.

Figures 6.15, 6.17, and 6.16 show the parallel version of\H@ueens solution
according to MAGMA, EARTH, and Cilk models, respectivelyu®to the nature of the
problem, theN-Queens code is amenable to parallelization. In the three modelsh ea
of the recursive function calls in the sequential prograrexiscuted on an independent

thread (or fiber depending on the model) so they can run cosaily.
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1 int sequeens(int n, int row, int start_col, int board[])
2 {

3 int col, sols_this_col, sols_other_cols;

4

5 if (row>=n) return 1;

6 for (col = start_col; col < n; col++) {

7 if (safe(board, row, col)) {

8 board[row] = col;

9 sols_this_col = sequeens(n, row+l, 0, board);

10 sol s_other_cols = sequeens(n, row, col+1, board);
11 return (sols_this_col + sols_other_cols);

12 }

13 }

14 return O;

15 }

Figure 6.13: SequentiaN-Queens Program

The Cilk program is again simpler than the programs writtecoeding to the
EARTH and MAGMA models. However, this simplicity comes at@st At runtime,
each instance of thequeens function stalls while it makes a copy of the current state
of the board. While data is transferred, no other thread cakenuse of the processing
element. On the contrary, MAGMA and EARTH models supporttggiase memory
copy transactions. While the runtime system transfers #ia, danother thread or fiber
could run on the processing element, achieving better resauilization.

Figure 6.14 shows the call graph for the MAGM¥®Queens program. Each in-
stance olhqueens that is not a leaf spawns two new instances of the same fumctio
However, the new threads remaior mant until the status of the board is percolated. Note
that after the status of the board has been percolated froroteememory once, subse-
guent block transfers are from local memory. This exampieatestrates how percolation
can improve memory bandwidth via data reuse.

The main features of the-Queensroutine (see Figure 6.15) implemented accord-

ing to the MAGMA model are as follows:
Line 8: After the search function finds a valid position for a queea,spawn the thread
sumthat will receive the results from each of the subproblenfishd main loop

in line 5 does not find a valid position for a queen, the seaucittion returns 0
directly to its parentin line 27.
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Figure 6.14: MAGMA N-Queens Call Graph

Lines 9—10: When the search reaches the last row, it is complete, andithent solution
is reported as one solution to teemthread.

Lines 12—-14: Otherwise, we spawn a new thread to continue the search suthaob-
lem. We add the new queen to the board and start searchingiefirst column
of the next row.

Lines 16—17: When the search reaches the rightmost column of the boarganhs that
a solution has not been found. At this point, the functiotstéie sumthread
spawned in line 8 that there is not a solution to the seconprsibkem.

Lines 19-21: Otherwise, we spawn another thread to continue trying jpositto the
right of the current column.

Lines 26-27: When the search throughout a row is unsuccessful, thisiumtglls the
sumthread spawned by its parent that the current subproblenmatidind any
solution.

Lines 33: After the threads spawned in lines 13 and 20 complete exatotiwhen the
current function reaches an edge of the board, lines 10 atloekdiumthread adds
the number of solutions to both subproblems and commursdageresult to the
sumthread spawned by its parent.

Lines 14 and 21: Before the thread spawned to compute one of the subprobseiinsd,
the status of the current board must be transferred. In #ss the user defines a
function (lines 36-39) and a single argument, that the nuatsystem invokes to
copy data from remote to local memory. We UWSETHER BLK_SYNC instead of
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nqueens(int n, int row, int start_col, int board[], SYNC SLOT result)

int col;

if (safe(board, row, col)) {
board[row] = col;

1

2

3

4

5 for (col=start_col; col<n; col ++) {

6

7

8 SPAWN(sum result, SYNC(this_col), SYNC(other_cols));
9

if (rowl == n) {
10 DATA_SYNC(1, SLOT_ADR(this_col));
11 }
12 el se {
13 SPAWN( nqueens, n, row+l, 0, SYNC(board), SLOT_ADR(this_col));
14 GATHER _BLK_SYNC( gat her, row, board, n*sizeof(int), SLOT_ADR(board));
15 }
16 if (col+l == n) {
17 DATA_SYNC(0, SLOT_ADR(other_cols));
18 }
19 el se {
20 SPAWN( nqueens, n, row, col+1, SYNC(board), SLOT_ADR(other_cols));
21 GATHER _BLK_SYNC( gat her, row, board, n*sizeof(int), SLOT_ADR(board));
22 }
23 br eak;
24 }
25 }
26 if (col ==n) {
27 DATA _SYNC(0, result);
28 }
29 }
30

31 sun(SYNC SLOT int result, int sols_this_col, int sols_other_cols)
32 {

33 DATA_SYNC(sol s_this_col +sol s_other_col s, result);

34 1}

36 gather(void *dst, void *src, int n, void *arg)
37 {
38 mencpy(dst, src, (int)arg);

Figure 6.15: MAGMA N-Queens Program

BLK_SYNCbecause the amount of data to move and the size of the budfian¢leds
to be allocated are different. We allocate sizeof (int) bytes but we only transfer
row X sizeof(int) bytes.

The implementation according to the EARTH and MAGMA modeis similar
because the semantics of the operations are the same. tasieisthe differences are that
in the EARTH program (see figure 6.17), a fiber collects thalte$rom the subproblems
instead of a threaded procedure. Additionally, the firstrfitfethe threaded procedure

copies the board from the parent’s thread in line 10. Oncdrtresfer completes, the
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1 cilk int nqueens(int n, int row, int start_col, int *previous)
2 {

3 i nt own_board[ MAX_BOARD_SI ZE], col, sols_this_col, sols_other_cols;
4

5 sols_this_col = sols_other_cols = 0;

6 mencpy(own_board, previous, rowsizeof(int));

7

8 if (row>=n) return 1;

9 for (col=start_col; col<n; col ++) {

10 if (safe(own_board, row, col)) {

11 own_board[row] = col;

12 sol s_this_col = spawn nqueens(n, rowt+l, O, own_board);

13 sol s_other_col s = spawn nqueens(n, row, col+1, own_board);
14 sync;

15 return (sols_this_col + sols_other_cols);

16 }

17 }

18 return O;

19 }

Figure 6.16: Cilk N-Queens Program

DATA_RECEI VED fiber does the actual search in lines 12-37. Because in EARIEH,
user is responsible for all the memory management, themumgplementation declares
an array in the frame of the threaded procedure. Howeveprtiggam could dynamically
allocate theown _boar d array elsewhere.

Like the implementation of the recursitAgbonacci program N-Queens sequential
C and Cilk programs are very similar. However, besides tléugion of the library
header file and the Cilk keywords, the Cilk program makes la@atencpy in line 6, to
copy the status of the board. Note that the Cilk program cdynrom on SMP systems,
precisely because theemcpy call. In this case, the simplicity of the Cilk model and the
C elision property comes at the expense of portability. Tiperational semantics of the

Cilk program can be summarized as follows:

Lines 12—-13: Generates parallelism when thqueens functions are executed in a sep-
arate thread and run concurrently with the parent. Thatéalmee the function is
preceded by the keywordpawn.

Line 14-15: The parent needs to execwtgnc in order to safely use the values that the
children returned.
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THREADED nqueens(int n, int row, int start_col,
int *GLOBAL previous, int *GLOBAL result, SPTR done)

{

}

int own_board[ MAX_BOARD_SI ZF],
col,
sols_this_col, sssols_other_cols;

sols_this_col = 0;
sol s_other_cols = 0;

BLKMOV_SYNC( pr evi ous, TO GLOBAL(own_board), rowsizeof(int),

FI BER DATA RECEI VED <* 1 *> {
for(col=start_col; col<n; col ++) {
if (safe(own_board, row, col)) {

}
}

own_board[row] = col;
if (rowl == n) {

sols_this_col = 1;

SYNC( DONE) ;
}
el se {

TOKEN( nqueens, n, rowt+l, 0, TO GLOBAL(own_board),

TO GLOBAL(&sol s_this_col), TO SPTR(DONE));
}
if (col+1l == n) {
SYNC( DONE) ;

el se {
TOKEN( nqueens, n, row, col+1, TO GLOBAL(own_board),
TO GLOBAL(&sol s_other_cols), TO SPTR(DONE));
}

br eak;

if (col ==n) {
SPAWK( DONE) ;

}

FI BER DONE <* 2 *> {
PUT_SYNC(sol s_this_col + sols_other_cols, result, done);
TERM NATE;

}

Figure 6.17: EARTH N-Queens Program
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1 void daxpy(int n, double al pha, double x[], double y[])
2

3 int i;

4

5 for (i=0; i<n; i++) {

6 y[i] = alpha = x[i] + y[i];

7

8

}
}

Figure 6.18: Sequentiataxpy Program

6.3.3 daxpy Example

Figure 6.18 shows an example of a sequenapy routine. The C code computes
a constant alpha times a vector plus another vegior=(a x x; + y;). It is a simplified
version in the sense that it assumes that the incrementgbetvectors: andy are equal
to one. In other words, the routine does not have the integgemaentsinc, andinc,
for the increment between vectarsandy, respectively. Figures 6.19, 6.20, and 6.21
show the parallel version of thdaxpy routine according to MAGMA, EARTH, and Cilk
models, respectively.

The sequential C implementation is straightforward usifay éoop. In lines 5-6,
the routine iterates over the vectarsandy of lengthn, adding a scalar multiple of a
double precision vector element to another double pratigextor element. The result
overwrites the initial values of vectgt

For the MAGMA and EARTH implementations, we assume that #er gan take
advantage of the regularity of the loop structure and tha datess pattern in order to
uniformly distribute the computation among threads (orrBksepending on the model).
In order to simplify the example and without loss of gen¢yalve also assume that the
length of the vectors is a multiple of the number of threaddif@rs). Quite differently,
the Cilk program recursively divides the computation ofragize daxpy problem into
2% subproblemsk is determined by the initial problem size, and a predefined thresh-
old, BLK_SI ZE. In the three models, the programmer is responsible forehaténg the

optimal block size.
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The Cilk program requires fewer number of lines of codes thathe other two.
Even though the Cilk program without the Cilk keywords idl stivalid C program, this
time it is not like the sequential C version. The sequermkpy routine is a single loop
whereas the Cilk program uses recursion. At each step, the@igram divides vectors
x andy into two halves. To keep track of the vectors’ boundaries,gtogram requires
an additional function argumendf(f set ). Then the program spawns two threads that
perform thedaxpy operation on each half of the vectarandy.

The implementations according to the MAGMA and EARTH modeis some-
what more complicated, mainly because the vector chunksransferred from a “re-
mote” to a “near” location. The Cilk program is simpler butrahtime, there may be
significant execution delays if the accesses are to remobteanye The EARTH model
ensures that the “near” location is on the same node, alth@ugpuld be in off-chip
memory. MAGMA goes one step further and guarantees thatrtbar" location is in-
deed local memory. In addition, the MAGMA program is simglean the EARTH code
because some of the memory management is handled diredthe loyntime system. For
instance, the MAGMA program does not do any memory allocafidhe runtime system
internally allocates temporary storage for vecter@ndy blocks, which are released by
the program once the partial results are obtained. The EARDgram on the contrary,
handles all memory manually. Note that the EARTH programnshio Figure 6.20 corre-
sponds to an unoptimized implementation with a naive buffanagement.On the other
hand, the Cilk program does not involve any data transfess tts simplicity. However,
on a cache-less system, such as Cyclops-64, the progrand wane to explicitly handle
all buffer allocation and data transfers to exploit logalit is very likely that the resulting

Cilk program will be as complex as the EARTH program. It issalorth noting that the

2 In order to simplify synchronization among fibers, the EAR@&kpy routine has
not been optimized with double buffers or alike. As a consege, the execution
appears to be pipelined but it actually runs sequentially.
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#i ncl ude <magna. h>

daxpy_fn(int n, double al pha, double x[], double y[],
SYNC_SLOT doubl e * done)
{

int i;

for (i=0; i<n; i++) {
y[i]l = alpha = x[i] + y[i];
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10 }

11 RELEASE( x) ;

12 DATA_SYNC(y, done);
13 }

15 scatter_fn(int n, double y reni], double y_loc[])
16 {

17 menmcpy(y_rem y_loc, n*sizeof(double));

18 RELEASE(y_I| oc);

19 }

20

21 daxpy(int n, double al pha, double x[], double y[])

22

23 int i;

24 int chunk_l en = n/ NUM_PES;

25

26 for(i=0; i<NUMPES; i++) {

27 SPAWN(scatter_fn, chunk_len, &J[i*chunk_|en], SYNC(y_local));

28 SPAWN(daxpy_fn, chunk_len, al pha, SYNC(x), SYNC(y), SLOT_ADR(y_local));
29 BLK_SYNC( &x[ i *chunk_I en], chunk_| en*si zeof (doubl €), SLOT_ADR(X));
30 BLK_SYNC( &y[ i *chunk_I en], chunk_| en*si zeof (doubl e), SLOT_ADR(Y));
31 }

32}

Figure 6.19: MAGMA daxpy Program

elision property, which makes Cilk highly efficient for dil@-and-conquer-programs, lim-
its the types of program paradigms that are supported angjles of machines where it
can run efficiently to shared-memory machines. From theudison above, the MAGMA
model offers a reasonable trade-off between programmgahbitid portable performance
for cache-less distributed memory systems.

The main features of thdaxpy routine (see Figure 6.19) implemented according

to the MAGMA model are as follows:

Line 24: Given our assumption that the vector length is a multipldefritumber of pro-
cessing elements, we evenly divide the computation amaongepsing elements.

Lines 26—31: The maindaxpy routine loop spawns twice as many threads as there
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are processing elements. THeaxpy_f n threads each do part of the computa-
tion, whereas thescat t er _f n threads will copy the, vector back to its orig-
inal location in memory. After alaxpy _f n thread computes its corresponding
chunk of vectory, ascatt er f n thread can start transferring the resulting
chunk back. The programmer explicitly tells the compilee ttependency be-
tween threadslaxpy _f n andscat t er _f n with the macrosSYNC(y_l ocal )
andSLOT_ADR(y_| ocal ) . Note thaty | ocal is neither a variable nor a con-
stant. It is only an identifier that the compiler uses to m&cT_ADR andSYNC
macros in lines 27 and 28, respectively.

Line 28: Thedaxpy _f n function expects vectors andy of lengthn. However, these
arguments are defined as missing with the keyv&dC.

Lines 29-30: Thedaxpy routine knows the address of vectarandy when it spawns
thedaxpy _f n thread. However, these vectors likely are not in local mgmbr
order tophysically enable thedaxpy_f n thread, thedaxpy routine invokes two
BLK_SYNC operations to transfer vectors chunksndy for its current location
(probably in remote memory) to a level of the memory hiergrcital to the pro-
cessing element. Triggered byBh K_SYNC operation, the system allocates some
temporary storage, and once the block of data has beendresfit will synchro-
nize thedaxpy _f n thread filling the appropriate argument slot with the adsids
the temporary storage to which the chunk has been copied.

Lines 8-9: Once thedaxpy _f n thread iphysically enabled, i.e., vectorsandy chunks
are in local memory, it performs the norndzixpy computation.

Line 11: After daxpy_f n completes the computation, and the partial result ig, ithe
thread releases the temporary storage that holds the lopglaf vectorz. The
chunk was allocated by the system as the resultBifla SYNC operation.

Line 12: Sends a synchronization signal to threadat t er _f n. This thread islormant
since it was spawned in line 27, waiting for a pointer to thealduffer where the
partial result {) is stored.

Line 17: The scat t er _f n thread copies the results (chunk of vectgrfrom local
memory to its original location.

Line 18: Releases the local copy of vectar
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1 THREADED daxpy(int n, double al pha, double x[], double y[], SPTR * done)
2 |

3 int i;

4 int chunk_l en = n/ NUM_NODES;
5 doubl e *Ix, *ly;
6

7

8

I x mal | oc(chunk_I| en*si zeof (doubl e));

ly mal | oc(chunk_I| en+*si zeof (doubl e));

9
10 for(i=0; i<NUM NODES; i++) {
11 FI BER COPY <* 0, 1 *>:
12 BLKMOV_SYNC( TO_GLOBAL( x+i *chunk_vec), |x, chunk_|l en, TO_SPTR(DAXPY));
13 BLKMOV_SYNC( TO_GLOBAL(y+i *rchunk_vec), |y, chunk_|l en, TO_SPTR(DAXPY));
14 }
15
16 FI BER DAXPY <* 2 %> {
17 for (i=0; i<n; i++) {
18 ly[i] = alpha = Ix[i] + ly[i];
19 }
20 BLKMOV_SYNC(|y, TO GLOBAL(y+i *chunk_vec), chunk_|len, TO _SPR(COPY));
21 }
22

23 free(lx);
24 free(ly);
25 SYNC( done) ;
26 TERM NATE;

Figure 6.20: EARTH daxpy Program

The main features of thdaxpy routine (see Figure 6.20) implemented according

to the EARTH model are as follows:

Lines 7-8: The initial fiber, which runs automatically when the thredd®ocedure
daxpy is | NVOKEd by the main program, starts with the allocation of a tempora
buffer for chunks of vectors andy.

Lines 10-11: Iterations of the threaded procedure’s main loop terneimdten the con-
trol flow reaches th&l BER keyword. After the first iteration is executed, however
the COPY fiber is executed because the fiber’s initial synchronipatiounter is
zero. Subsequent firing of instances of this fiber is corddolly the synchroniza-
tion signal sent by thBAXPY fiber in line 20.

Lines 12-13: Fiber COPY transfers two chunks of vectogsandy from remote memory
into this node’s memory. Once the data is copied intandly the runtime system
will sync theDAXPY fiber twice, one for each chunk.

Line 16: OnceDAXPY’s synchronization slot counter reaches zero, the fiber ableal
for execution. When the fiber starts running, it first comptie linear combination
ly; = a X lx; + ly;. Then it transfers the partial resultsiimto the location from
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1 #include <cilk. h>

2

3 cilk void daxpy(int n, int offset, double alpha,
4 doubl e x[], double y[])

5 {

6 int i;

7 int n2;

8

9 if (n<BLK_SIZE) {

10 for (i=0; i<n; i++)

11 y[i+of fset] = alpha » x[i+offset] + y[i+offset];
12

13 el se {

14 n2 = n > 1;

15 spawn daxpy(n2, offset, alpha, x, y);

16 spawn daxpy(n-n2, offset+n2, alpha, x, y);
17 }

18 }

Figure 6.21: Cilk daxpy Program

which the chunk was originally read, line 20. After the date lbeen scattered,
it is safe to reuse bufferls: andly for another iteration. Onc€0PY receives this
synchronization signal, it will transfer two new blocks @ftd from remote memory
and will continue through another iteration of the main lo&gain, once control
flow reaches the keyword FIBER the ongoing iteration terteis.a

Lines 23-26: After the main loop completes all the iterations, executiontinues in line
23. The threaded procedure releases the memory allocatéd dad/y, synchro-
nizes the parent’s threaded procedure, and terminatestexec

As mentioned above, this implementation of texpy routine according to the
EARTH model could be further optimized. The current impleta¢ion allocates a single
buffer and therefore cannot apply techniques such as dduuiflering in order to hide
latency. As a result, execution is serializ€DPY, DAXPY, and the initial fiber execute
one iteration at a time. With double or triple buffering,ereaving of the stages would
be possible, thus hiding the communication latency betwa&aPy and DAXPY. How-
ever, the programmer would be responsible for all memoryagament. On MAGMA,
memory management is almost transparent.

The main characteristics of tlaaxpy routine implemented in Figure 6.21 accord-

ing to the Cilk model are as follows:
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Lines 13-17: As long as the problem size is bigger than the predefined hbles
BLK_SI ZE, the Cilk routine continues applying recursion and decosepan:-
size problem into twa/2-size subproblems.

Line 15: The program spawns a thread to compute the result for thesize subproblem
corresponding to vectorsandy first halves.

Line 16: The program spawns a second thread to compute the resuhidor/-size
subproblem corresponding to vectarandy second halves.

Lines 9-12: Once thedaxpy(n) function determines that it is a leaf, it performs the
daxpy operation on the two input vectors using a loop. Becauseakgy function
operates directly on theandy vectors, it has to keep track of each chunk’s position
within the vector. The loop iteration uses this positiai {set ) to access the
correct section of the vectors.
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Chapter 7

EXPERIMENTAL RESULTS

In this chapter, we present the experimental results for TNM. The main re-

sults of our experimental study can be summarized as foilows

¢ High efficiency: Our microbenchmarks demonstrate that TNT primitiveslioead

creation and recycling complete in a few hundred cycles i@ithoverhead.

e Scalability: An increased workload (number of threads spawned by a fmgerch-
mark) and/or additional hardware resources (thread uaniésg¢asily handled by the

runtime system with negligible impact on the operationsefriuntime system.

e Usability: Our experience with MAGMA demonstrates that the TNT useel
library without kernel intervention (hence, no disrupjiocan effectively support a

multithreaded program execution model.

Experimental Platform

We conducted our experiments with the Cyclops-64 softwanését 2.4 release,
which includes the C64 GCC-4.1 compiler, the FAST simulaiwd the C64 kernel. For
the purpose of these experiments, we replaced the defadik€ el with the TNT library

and a small amount of code that bootstraps the new library.

7.1 TNT Results
To measure the overhead imposed by thread managementiopgrate wrote a

simple microbenchmark. The main function consists of alsit@pp to create a number
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#i ncl ude <tnt.h>
#def i ne NUM_THREADS 10000
voi d enpty_fn(void)

return;

}

10 int main()

11

12 tnt_desc_t th_desc;
13 int64_t error = 0;

©CoO~NO O WNPE

15 for (i=0; i<NUM THREADS && !'error; ++i) {

16 if (tnt_create(& h_desc, &enpty_fn, NULL) != 0) {
17 error++;

18 }

19 }

20 }

Figure 7.1: TNT Empty Microbenchmark

of threads. After all the threads have been spawned, thearogeturns. The threads
spawned by the microbenchmark execute an empty functierfiggire 7.1. They return
almost instantaneously and they are immediately recyclethé runtime system. We
define “user time” as the elapsed time between the invocatidhe main function and
its termination, which mainly accounts for the loop thatates all the threads. We also
measure the “system time”, defined as the wall time it take®toplete the execution of
the program. The system time accounts for the executiorneainidin function in addition
to all the work generated from it. Because the thread funstare empty, the difference
between the system and user times represents the overhiedrohtime system, i.e. the
time spent in the creation, termination, and recycling oé#uls.

For the purpose of this experiment, we modified the TNT Ifprsw that it only
allocates 1,000 thread descriptors, and these are altbfrata the on-chip memory (ini-
tially TNT can allocate descriptors from off-chip memorgpjoAccordingly, the program
detects whether a thread could not be spawned, i.e. TNTdftolereate another virtual
thread because all the thread descriptors were being usedg@minates.

Table 7.1 and Figure 7.2 summarize the system and user tiraasured by the
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Table 7.1: Empty Microbenchmark Execution Times [in Ten Thousand Clock €skl

VTs 1,000 10,000 100,000

HTs | System| User| System| User| System| User
1 183| 63 183| 63 183 63
2 103| 63 228 | 158 228 | 158
3 104| 87 887 | 870| 8,717| 8,700
4 104| 86 884 | 867| 8,687| 8,670
8 104| 86 884 | 867| 8,687| 8,670

16 104 86 884 | 867| 8,687| 8,670
32 104 86 884 | 867| 8,687]| 8,670
64 104| 86 884 | 867| 8,687| 8,670
128 104| 86 885| 867| 8,688| 8,670
160 104 86 885| 867| 8,688| 8,670

microbenchmark that creaté$?, 10?, and10° threads, on a platform with an increas-
ing number of hardware thread units. Because of the TNT rjbraodifications de-
scribed above, when there is a single hardware thread teitptogram only spawns
1,000 threads, and when there are two hardware thread th@tprogram spawns 2,498
threads, instead afo* and10°.

As expected, the benchmark’s execution time increasearlinaith the number
of threads spawned by the program. A point worth noting iswlith three or more thread
units, the system and user times remain constant. That ntleaing system with at least
three thread units is able to recycle threads as fast as theyeated. How fast can TNT
spawn and recycle threads? From the user time in the lagheole determine that TNT
can spawn a thread in about 867 clock cycles. We define theleetigne as the elapsed
time from the moment a virtual thread returns until the threait starts execution of the
next virtual thread. That time is precisely the differenetween the system and user
times when the microbenchmark runs on a single thread urtnEhe values of the first
row in Table 7.1, we determine that the recycle time is leas th 200 cycles. In light of

these numbers, the execution of the microbenchmark canrbmatized as follows. The
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Figure 7.3: Thread Execution Interleaving

master thread executes a loop iteration every 867 cyclea. system with three thread
units, each of the two remaining thread units will be ablexecete every other virtual

thread so by the time the master thread returns, the worlkext been almost completed,
see Figure 7.3.

When the hardware resources scale from 1 to 160 thread wvetsiotice that
the thread creation time increases from 630 to 867 cycless Mdppens because when
there are not enough hardware thread units to pick up the wa&ted by the master
thread, creating a new thread involves the initializatiba thread descriptor and pushing
the descriptor to the virtual ready queue. However, if theme thread units, one will
be bound to the new thread and start its execution. This tapt requires additional
processing (queue operations), thus the increased eapdiurtie.

In the Empty microbenchmark, the main function creates a number of tsrea-

guentially. Because threads execute an empty functiopsétern almost instantaneously
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1 #include <tnt.h>
2
3 #define TREE_DEPTH 10
4
5 void tree_fn(int64_t =ptr_depth)
6
7 tnt_desc_t th_desc;
8 int64_t depth = (int64_t)ptr_depth;
9 int64_t error = 0;
10
11 if (depth > 1) {
12 if (tnt_create(& h_desc, &ree_fn, (void *)depth-1) ||
13 tnt_create(& h_desc, &ree_fn, (void *)depth-1)) {
14 error++;
15 }
16 }
17 }
18
19
20 int main(int argc, char *argv[])
21 |
22 int64_t depth = TREE_DEPTH;
23
24 tree_fn((void *)depth);
25 }

Figure 7.4: TNT Binary Tree Program

and they are immediately recycled by the runtime system. @asure the overhead im-
posed by thread management operations with a large numlaatieé thread units, we
wrote a second microbenchmark. This program spawns thieadbinary tree fashion.
The main function executes a procedure that spawns twodsir@ad terminates. Each
thread then executes the same procedure so four additioealds are created. The pro-
cess continues until a specified depth is reached, at whiit, gbe procedure returns
immediately, see Figure 7.4.

We define “work time” or “work” as the elapsed time betweentérenination of
the main function and the completion of all the work genatde the program. Because
the main function only spawns two threads, it returns alnmostediately. Therefore, the
“user time” is meaningless. Similarly, the “system timetaants for the initialization of
the system, which for small problem sizes, dominates thewtan of the microbench-
mark. Thus, the “system time” is not meaningful either. Fartree microbenchmark the

“work time” is a better indicator of the overhead incurredtbg runtime system.
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Figure 7.5 shows the execution of the binary tree microberack for depths be-
tween six and ten. As expected, the “work time” increaseh thi¢ problem size (depth),
and for a given depth the “work time” decreases as we incrémeseumber of hardware
thread units. However, with more than eight thread units,“thork time” does not im-
prove any further, which seems to indicate the system is cadable. On the contrary,
given the speed at which the program spawns threads, angebd at which the runtime
system can recycle them, the “work time” does not improvéwibre than eight threads
because there is a bottleneck in the TNT library. In paréigithere was a single queue
to manage all the virtual threads. This result means that $hduld have 16 queues to
recycle threads in parallel. In conventional SMP machities, runtime system usually
maintains one queue per processor to avoid this type ofenaitk. TNT does not require
as many, which demonstrates its efficiency. In TNT, any tthtbat returns to the runtime
system, executes the thread scheduler procedure desuriBedtion 5.2.3. Even though
the scheduler can be invoked by many threads in paralleigieid all the threads access
the same queue of virtual threads, hence the initial lackagdility. It is worth noticing
that even though the “work time” does not improve (beyondrgdt units) it does not
worsen either. This result means that the system is ableittamaa constant throughput,

regardless of the load. Such a result confirms the efficiehtyeoruntime system.
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Chapter 8

CONCLUSIONS

This dissertation has presented TiNy Threads (TNT), a Rradgixecution Model
Aware Thread Virtual Machine (TVM) for the Cyclops-64 cédusupercomputer.

We believe that the Program Execution Model should be agiat@art of a com-
puting system, especially on high-end computing systeonayadid unnecessary interfer-
ence from the OS and subsequent performance degradatiothi$ceason, we propose
a system software methodology that ensures that critigadlméties such as fine-grain
multithreading and synchronization are exposed to therBmd=xecution Model via a
narrow interface. Given the features of the Cyclops-64 rr@org architecture, we imple-
mented TNT as a user library that replaces the OS complgtetiyrovides direct access
to critical hardware resources.

We define the operational semantics of the MAGMA Program Eten Model,
and we complete an early implementation of MAGMA using TNé&pubnstrating that
the Cyclops-64 TVM provides a sound model for the researchdmvelopment of ad-
vanced Program Execution Models. MAGMA thread model is base event-driven
non-preemptive threaded procedures with dataflow-likelsgonization. MAGMA ex-
ploits locality using percolation to migrate data amondedént levels of the memory

hierarchy before the computation starts.
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8.1 Future Work

This dissertation has defined the TNT Thread Virtual Machigsupport the de-
velopment of Program Execution Models on many-core archites. One obvious con-
tinuation of the current work is to extend the TNT Thread MttMachine to a multi-
chip environment. There are some natural limitations i&stg the maximum number
of chips that FAST can simulate. These limitations, rathantrestrictions on the model
itself, prevented us from developing a multi-chip framekvadnce C64 systems become
available in the upcoming Fall, these limitations will ce&s be an issue.

Once MAGMA adopts the TNT multi-chip environment, we inteondextend the
percolation model so that the programmer has finer contnds lmcal memory. The
destination address of a percolation operation involvimg hodes could be either off-
chip or on-chip memory. In both cases the memory will be leac#the processing element
residing on the target node.

In the Cyclops-64 architecture, ten thread units share &32tache. To improve
I-cache utilization, TNT’s thread scheduler could be ojted to run threads with the
same thread activation pointer on thread units that shareache.

Another area to continue working on is the MAGMA precompilénlike EARTH
and Cilk, currently there is not a MAGMA precompiler. A preapiler would accept
MAGMA programs as described in Chapter 6 and would genetatelard C code with
function calls to the MAGMA runtime system. Such a precompdould be integrated

into the C64 toolchain to facilitate the development of MAGMpplications.
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Appendix
N-QUEENS SOURCE CODE
Sequential
Figure A.1 shows an example of a sequenti&@ueens program.

MAGMA
Figures A.2 and A.3 show the full MAGMAI-Queens program.

EARTH

Figures A.4 and A.5 show the source code offh@ueens code in EARTH.

Cilk
Figures A.6 and A.7 show the Cilk program for the enumeraicthe N-Queens.
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#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#defi ne MAX_QUEENS 24

int safe (int board[], int row, int col)

{

int rowchk, col chk;

for (rowchk = 0; rowhk < row, rowchk++) {
col chk = board[rowchk];

if ((col == colchk) || (row - rowchk == col - colchk) ||
(row - rowchk == colchk - col))
return O;
}
return 1;
}
int sequeens(int n, int row, int start_col, int board[])

int col, sols_this_col, sols_other_cols;

if (row>=n) return 1,
for (col = start_col; col < n; col++) {
if (safe(board, row, col)) {
board[row] = col;
sol s_this_col = sequeens(n, row+l, 0, board);
sol s_other_cols = sequeens(n, row, col+1, board);
return (sols_this_col + sols_other_cols);
}
}
return O;

}

main (int argc, char *argv[])
{
int n, result, board[ MAX_QUEENS] ;

n = atoi(argv[1]);
printf("queens (%) running on % processors\n", n, 1);

result = sequeens(n, 0, 0, board);
printf("Nunmber of solutions: %\n", result);

Figure A.1: SequentiaN-Queens Program
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nqueens(int n, int row, int start_col, int board[], SYNC SLOT result)

int col;

for (col=start_col; col<n; col ++) {
if (safe(board, row, col)) {
board[row] = col;
SPAWN(sum result, SYNC(this_col), SYNC(other_cols));

if (rowl == n) {

DATA _SYNC(1, SLOT_ADR(this_col));
}
el se {

SPAWN( nqueens, n, row+l, 0, SYNC(board), SLOT_ADR(this_col));
GATHER BLK_SYNC( gat her, row, board, n*sizeof(int), SLOT_ADR(board));

}
if (col+l == n) {
DATA_SYNC(0, SLOT_ADR(other_cols));
}
el se {
SPAWN( nqueens, n, row, col+1, SYNC(board), SLOT_ADR(other_cols));
GATHER _BLK_SYNC( gat her, row, board, n*sizeof(int), SLOT_ADR(board));
}

br eak;
}
}
if (col ==n) {
DATA _SYNC(0, result);
}

sun{SYNC_SLOT int result, int sols_this_col, int sols_other_cols)

DATA_SYNC(sol s_this_col +sol s_other_col s, result);

gat her(void *dst, void *src, int n, void *arg)

menmcpy(dst, src, (int)arg);

Figure A.2: MAGMA N-Queens Program
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#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <magna. h>
#defi ne MAX_BOARD_SI ZE 24

int safe(int board[], int row, int col)

{
int rowchk, col chk;
for (rowchk=0; rowchk<row, rowchk++) {
col chk = board[rowchk];
if ((col == colchk) ||
(row - rowchk == col - colchk) ||
(row - rowchk == col chk - col))
return O;
}
return 1;
}

voi d print_usage_and_di e(void)

fprintf(stderr,"usage (with 1 <= size <= %l):\n"
queens size\n", MAX_BOARD S| ZE);
exit(1);
}

int main (int argc, char rargv[])

{
int n;
int place[ MAX_BOARD_SI ZE] ;

if (argc !'= 2)
print_usage_and_die();

n = atoi(argv[1]);
if (n<l || n>MAX_BOARD SI ZE)
print_usage_and_die();

SPAWN(done, SYNC(res), n);

SPAWN( nqueens, n, 0, 0, SYNC(board), SLOT_ADR(res));

BLK_SYNC(board, n+sizeof(int), 0, SLOT_ADR(board));
}

done(int result, int n)

{
printf ("queens(%l) = %\n", n, result);

Figure A.3: MAGMA N-Queens mai n Function
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THREADED nqueens(int n, int row, int start_col,
int *GLOBAL previous, int *GLOBAL result, SPTR done)

{

}

int own_board[ MAX_BOARD_SI ZF],
col,
sols_this_col, sssols_other_cols;

sols_this_col = 0;
sol s_other_cols = 0;

BLKMOV_SYNC( pr evi ous, TO GLOBAL(own_board), rowsizeof(int),

FI BER DATA RECEI VED <* 1 *> {
for(col=start_col; col<n; col ++) {
if (safe(own_board, row, col)) {

}
}

own_board[row] = col;
if (rowl == n) {

sols_this_col = 1;

SYNC( DONE) ;
}
el se {

TOKEN( nqueens, n, rowt+l, 0, TO GLOBAL(own_board),

TO GLOBAL(&sol s_this_col), TO SPTR(DONE));
}
if (col+1l == n) {
SYNC( DONE) ;

el se {
TOKEN( nqueens, n, row, col+1, TO GLOBAL(own_board),
TO GLOBAL(&sol s_other_cols), TO SPTR(DONE));
}

br eak;

if (col ==n) {
SPAWK( DONE) ;

}

FI BER DONE <* 2 *> {
PUT_SYNC(sol s_this_col + sols_other_cols, result, done);
TERM NATE;

}

Figure A.4: EARTH N-Queens Program
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#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

#defi ne MAX_BOARD S| ZE 24

int safe( int board[], int row, int col )

{
int rowchk, col chk;
for( rowchk = 0; rowchk < row, rowchk++ ) {
col chk = board[rowchk];
if ( (col == colchk) |]
(row - rowchk == col - colchk) ||
(row - rowhk == colchk - col) )
return( 0 );
}
return( 1);
}

voi d print_usage_and_die()

fprintf( stderr, "usage (with 1 <= size <= %l):\n"
queens size\n", MAX_BOARD Sl ZE );

exit(1);
}
THREADED MAI N( int argc, char xargv[] )
{
int n, result, place[ MAX_BOARD_SI ZE] ;
if (argc !'= 2)
print_usage_and_die();
n = atoi(argv[1]);
if (n<1]|] n> MXBOARD SIZE )
print_usage_and_die();
I N\VOKE( 0, nqueens, n, 0, 0, TO GLOBAL(pl ace),
TO GLOBAL(&result), TO SPTR(DONE) );
FI BER DONE <* 1 *> {
printf( "Number of solutions for %l queens = %\n",
n, result );
TERM NATE;
}
}

Figure A.5: EARTH N-Queens mai n Function
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cilk int nqueens(int n, int row, int start_col, int *previous)

{
i nt own_board[ MAX_BOARD_SI ZE], col, sols_this_col, sols_other_cols;

sols_this_col = sols_other_cols = 0;
mencpy(own_board, previous, rowsizeof(int));

if (row>=n) return 1;
for (col=start_col; col<n; col ++) {
if (safe(own_board, row, col)) {
own_board[row] = col;

sol s_this_col = spawn nqueens(n, rowt+l, O, own_board);
sol s_other_cols = spawn nqueens(n, row, col+1, own_board);
sync;
return (sols_this_col + sols_other_cols);
}
return O;

Figure A.6: Cilk N-Queens Program
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#i
#i
#i

ncl ude <stdio. h>
nclude <stdlib. h>
ncl ude <cil k. h>

#defi ne MAX_BOARD S| ZE 24

int safe( int board[], int row, int col )

{

int rowchk, col chk;

for( rowchk = 0; rowhk < row, rowchk++ ) {
col chk = board[rowchk];

if ( (col == colchk) []
(row - rowchk == col - colchk) ||
(row - rowhk == colchk - col) )

return( 0);

return( 1);

voi d print_usage_and_die()

{

fprintf( stderr, "usage (with 1 <= size <= %):"
' queens size\n", MAX_BOARD Sl ZE );
exit(1);

ilk int cilk_main(int argc, char =argv[])

int n, result, place[ MAX_BOARD_SI ZE] ;

if (argc !'= 2)
print_usage_and_die();

n = atoi(argv[1]);
if (n<1]|] n> MXBOARD SIZE )
print_usage_and_die();

result = spawn nqueens(n, 0, 0, place);

sync;

printf("Nunber of solutions for %l queens = %\ n",
n, result );

return O;

Figure A.7: Cilk N-Queens mai n Function
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