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ABSTRACT

The Cyclops-64 (C64) project questions fundamentally the suitability of conven-

tional operating systems to achieve high performance. Domain-specific application ex-

perts who have participated in the conception of all aspectsof the system software for the

C64 supercomputer mandated that Linux was not adequate. Their previous experience

with parallel applications that did not scale well for various reasons motivated us to de-

velop a standalone Thread Virtual Machine (TVM) from scratch. Its implementation in

the form of the TiNy Threads (TNT) library had the clear goal of allowing applications to

achieve full resource utilization.

This dissertation is about the C64 system software in general, and the TNT library

in particular. TNT replaces the conventional OS with a non-intrusive runtime system.

Even though it is implemented as a user-level library, TNT manages the hardware re-

sources directly. In addition, TNT provides a solid foundation for the development of

advanced program execution models. However, for rapid prototyping of applications,

TNT also provides a familiar Linux-like programming environment.

As evidence that the TNT model provides a good platform to experiment with

innovative execution models, we developed MAGMA. Defined asa memory adaptive

program execution model for multicore architectures, MAGMA uses percolation to mi-

grate data that the user (programmer or compiler) identifies, to a level of the memory

hierarchy local to the processing element before computation starts. MAGMA takes ad-

vantage of the large number of thread units in C64. MAGMA implements a multithreaded

percolation engine that runs on a number of cores to maximizebandwidth utilization.

xiii



Chapter 1

INTRODUCTION

Throughout history, science and technological progress has been the result of the-

ory and experiment. More recently, with the advent of computer machinery, scientists

have been able to analyze and better understand complex physical phenomena and engi-

neering systems through computer models, to such an extent that computer modeling and

simulations are nowadays widely recognized as fundamentalcomponents in science and

technology development.

In parallel to the expansion of computer models and simulation techniques, high-

end computing systems, also known as supercomputers, have become increasingly im-

portant because they allow scientists and engineers to model such systems in far greater

detail and complexity than what main-stream computer systems allow.

Earth and atmospheric sciences, energy and environment, nanoscale science and

technology, life sciences, and aerospace vehicle design are some of the application do-

mains that currently demand an increase in both computing power and memory space.

This increase ranges from 100 to 1,000 times of today’s computing systems resources to

tackle certain important scientific and engineering problems [13].

Despite advances in high-end computing technology, the effective use of high-

end computing systems is still limited by issues such as poorsystem performance and

reliability, as well as the increasing cost and risk of software development. In fact, there

is a widespread agreement among the high-end computing community that those aspects

of the hardware and software that impact performance, programmability, ease of use, and
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scalability need to be addressed if we are to manage such a setof large computational

problems.

From the hardware standpoint two separate matters need to beconsidered: chip

design and system integration. First, as advances in integrated circuits technology allow

the feature size to drop, density of transistors on silicon chips are to continue increasing

for the next years following Moore’s Law1 [44]. Not surprisingly, billion-transistors chips

have been launched already by a few major chip manufacturers[26, 6] and multi-billion

transistors chips are expected before 2010 [10, 49, 41, 55, 39, 32, 60]. By that time,

the main limitation for the emergence of new micro-architecture functionality will be the

computer architect’s imagination. However, hardware designers are expected to deal with

issues that have started to surface in current technology. For instance, CPU power dissi-

pation imposes already serious constraints on the scaling of clock frequency. In addition,

as wires become slower relative to logic gates, the distribution of a single global clock

throughout a chip will be a difficult challenge. A paradigm proposed to cope with this

constraint is the integration of a large number of simple processors on a single die, in what

is known as Chip Multi-Processors (CMP), instead of devoting the entire die to a single

and complex processor. In the last years, all major microprocessor manufacturers have

been releasing dual- and quad-core versions of their processors, and have also announced

their intentions to bring eight-core chips to the market. Therefore, as the semiconductor

technology surpasses the integration of a billion transistors on an integrated circuit, we

should expect chips based on multicore architectures to become commonplace. Second,

there is greater evidence that applications would benefit significantly from an alternative

to the commercial off-the-shelf (COTS) based solutions that have dominated the super-

computing arena over the last decade. Indeed, government agencies and hardware vendors

are currently working on a major departure from the Beowulf paradigm [2, 34, 46].

1 Moore’s Law describes the trend that the number of transistors integrated on a chip
would double about every two years.
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From the software point of view, programmability, portability and reliability of

both operating and runtime systems are still open issues. These are only aggravated by the

requirement for sustainable and scalable real (not peak) performance. Increasing coupling

among all the software layers seems an important trend aimedto increase transparency

and reduce overheads. If the hardware was efficiently exposed to the programmer, the

user could take advantage of the functionality that impactsperformance. A question still

remains: how to narrow the interface between the raw architecture and the user.

In December 1999, IBM announced the Blue Gene project as an effort to build

a new generation of supercomputers. Since then, two different architecture designs have

been proposed, which are at different stages of development. Blue Gene/L [3, 24, 25] sys-

tems, based on a dual- and quad-core Power4 processors, havebeen shipped to various

research institutions and are among the top ten most powerful supercomputers. Cyclops-

64 [19] employs a state-of-the-art multiprocessor-on-a-chip technology to build a com-

pletely new chip. Hence, it is in an earlier stage of development with the first system

prototype expected by the end of this year.

Cyclops-64 (C64) is a petaflop supercomputer project under development at IBM

Research Center. C64 is designed to serve as a dedicated compute engine for running

high performance applications such as molecular dynamics,to study protein folding, and

image processing, to support real-time medical procedures. Using a cellular organization,

a C64 petaflop machine is built out of millions of simple processing cells; a thread unit, the

base processing element, is replicated and conformed into several structural organizations.

Two thread units, the same number of SRAM memory banks, and a floating point unit

constitute a processor. Eighty processors connected to a crossbar network, instruction

cache, bidirectional inter-chip routing ports, and an interface to off-chip DDR SDRAM

are integrated on a C64 chip. Finally, tens of thousands of C64 nodes, each one consisting

of a C64 chip, external DRAM and a small amount of external interface logic, build a C64

supercomputer.
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With the advent of a new generation of high performance computing systems, as

well as features unique to those found in the Cyclops-64 cellular architecture, it is the

objective of this research to answer questions such as:

• What role should the program execution model play in the definition and use of

computer systems, in general, and of high performance computing systems, in par-

ticular?

• What does the interface between the program execution modeland OS look like?

• How can the OS facilitate the adoption of new program execution models?

• Should the OS, as we know it today, be replaced?

• Can a program execution model provide the umbrella under which all the aspects of

a computing system (hardware, runtime system, compiler, and user) work together

to minimize the effects that limited memory bandwidth and long memory latency

have on application performance and, as a result, on the productivity of a computing

system?

1.1 The Cyclops-64 Project

The Cyclops cellular architecture, first proposed in late 1990s at IBM’s T.J. Wat-

son Research Center, has since evolved substantially in different application contexts

and directions. The latest Cyclops-64 (C64) chip architecture employs a multiprocessor-

on-a-chip design with a large number of hardware thread units and embedded memory.

The C64 has a high computation to memory ratio (number-of-hardware-threads/on-chip-

memory); 1 to 2 orders of magnitude higher than a modern microprocessor chip.

The C64 is designed to serve as a dedicated compute engine forrunning high per-

formance applications such as molecular dynamics, to studyprotein folding, and image

processing, to support real-time medical procedures. The C64 supercomputer is attached
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to a host system through a number of Gigabit Ethernet links. The host system provides a

familiar computing environment (such as Linux) to application software developers and

end users. Each C64 chip has access (through the Ethernet links) to a common file server

used for storing input and output data sets used and producedby application programs.

The main objective behind the C64 chip design is to build a petaflop computer by

scaling up some millions of simple processing elements and providing massive intra-chip

parallelism to tolerate memory and functional unit latencies. On the C64 architecture, the

computational cell is a simple thread unit; a 64-bit in-order RISC processor with a small

instruction set architecture (60 instruction groups) operating at 500MHz. If a thread stalls

on a memory access because of a data dependency between instructions, other threads

can proceed independently.

With more than 100 thread units, a C64 chip can be seen as an n-way Symmetric

MultiProcessing (SMP) system. Although memory is shared within a chip, communica-

tion among nodes is only possible by means of message passing. Hence, a C64 super-

computer can be seen as a cluster of SMPs. Simplicity in hardware design led to a system

with no resource virtualization (virtual addresses map directly to physical addresses and

execution is non-preemptive) and a non-uniform address space (with several memory lev-

els exposed directly to the user). Caches, which would be hard to keep coherent, have

been replaced with on-chip memory mapped into the address space, hence controlled by

the programmer.

The Cyclops-64 system software development project began with the objective of

designing a full system software infrastructure for the C64architecture. Such a software

infrastructure had to provide a reasonable interface for application developers, yet ex-

pose as much functionality as possible to achieve high-levels of performance. Given an

architecture like C64, aimed for sustainable performance through simplicity, it was not

the intention of this project to build a conventional software development environment.

Instead, we built a custom system software from the ground up.
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Based on our previous experience in the embedded Cyclops-32project [52, 18],

we believe the first requirement from the system software standpoint is a Thread Virtual

Machine that can efficiently manage hardware resources suchas a large number of thread

units without OS intervention, and will cause no disruptionto the user application.

1.2 Contributions

Many people have been involved in various aspects of the Cyclops-64 project, and

in the development of the Cyclops-64 system software. The following are the contribu-

tions that are solely or primarily the work of the author:

• Revising the role that the OS plays in current high performance computing systems,

and proposing to replace the OS with a Program Execution Model aware Thread

Virtual Machine (TVM). A TVM not only provides the abstraction layer and the

application program interface that programmers expect, but it also supports the di-

rect mapping of program execution models to the architecture without interference

from the OS.

• Proposing a system software methodology centered in the premise above, and ar-

chitecting the design and development of the system software infrastructure for the

Cyclops-64 supercomputer according to such methodology.

• Designing and constructing FAST, a functionally accurate simulator for the

Cyclops-64 architecture. FAST played a critical role in theproject, as it has been

supporting all Cyclops-64 system software design, development and testing for the

past four years and helped in the verification of the Cyclops-64 logic design as well.

• Designing and implementing TNT, a Thread Virtual Machine for the Cyclops-64

architecture. TNT, provided in the form of a light-weight microkernel and runtime

system library, has been in production use for the past two years.
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• Studying the OpenMP programming model on Cyclops-64. Givenan OpenMP

compiler that was ported to the Cyclops-64 architecture, weoptimized the OpenMP

runtime library to study the feasibility of OpenMP as a possible programming

model for Cyclops-64.

• Demonstrating that the Cyclops-64 system software platform, implemented as part

of this research, is sound.

• Defining the MAGMA Program Execution Model as an abstract model for running

multithreaded applications on multicore based systems. MAGMA applications are

able to tolerate the different latencies that are common in multi-level memory hier-

archies present in modern multicore architectures via percolation.

• Comparing the MAGMA, EARTH, and Cilk Program Execution Models, and ex-

plaining their similarities and differences, as well as their strengths and weaknesses.

• Implementing the MAGMA Program Execution Model for the Cyclops-64 chip ar-

chitecture, and the corresponding software support in the Cyclops-64 system soft-

ware toolchain.

• Demonstrating that the TNT model provides a solid foundation for development of

advanced Program Execution Models.

• Coding various benchmarks according to the MAGMA Program Execution Model

so they may be tested with the Cyclops-64 system software toolchain.

1.3 Synopsis

This dissertation is organized as follows:

In Chapter 2, we review the early history of operating systems as well as the state

of the art today. We point out that some of the principles established in the 1960s with
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the purpose of using computing systems more efficiently are still in use today. How-

ever, like other authors, we question whether the same modelis directly applicable to

high-end computing systems. We also compare our work with many other threading and

multithreading packages available these days, and we highlight why none of them fit our

purpose.

Our research proposes a new system software methodology aimed at future high-

end computing systems using multicore architectures. Chapter 3 provides a classification

of multicore architectures (coarse and fine-grain multicore). This chapter also introduces

Cyclops-64 (C64), the many-core architecture used in this research.

Chapter 4 describes the design and implementation of the Cyclops-64 system soft-

ware. It focuses on three main components: the host software, the C64 toolchain, and the

FAST simulator.

Chapter 5 describes the key component of the C64 system software, and the pur-

pose of this research, the TiNy Threads Thread Virtual Machine. First, we present the

architecture of the overall TVM, then we describe the implementation of TNT.

In Chapter 6 we present MAGMA, a memory adaptive program execution model

for many-core architectures. We use program examples to illustrate the basic features

of the program execution model, we define the MAGMA model and we enumerate the

operations supported in the MAGMA model, and we finish with a comparison between

MAGMA, EARTH and Cilk program execution models.

Chapter 7 summarizes our experimental results. We present our final conclusions

and future work in Chapter 8. Appendix A provides the complete source code of theN-

Queens program that we used in the comparison between MAGMA, EARTH,and Cilk.
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Chapter 2

BACKGROUND

In the early days of computing, when mainframes and minicomputers were ex-

tremely expensive, the notion of sharing computing resources took root. Multitasking, a

collection of methods that facilitate sharing common resources among multiple processes

and users, became popular. First, multiprogramming systems were developed, in which

a task runs until the program performs an operation that requires waiting for an external

event. In order to efficiently use an expensive CPU, in multiprogrammed systems a pro-

cess that becomes idle waiting for I/O is swapped out, until the I/O operation completes.

Multiprogramming (operating) systems required the invention of a number of techniques,

including the concepts of virtual memory [27, 38, 5] and time-sharing [12, 11]. Virtual

memory not only gives a program the illusion of a large and continuous address space, but

it also solves the memory protection problem and permits users to share memory segments

containing data or procedures. More importantly, virtual memory provided the foundation

for an unparalleled degree of programming generality that is still in use today [20, 21, 15].

Time-sharing provided multiple users simultaneous accessto a computing system. In the

first time-sharing systems, a user was serviced using some other user’s idle time. With

the advent of hardware and software support for preemption,the operating system could

establish a fixed time slice per process, and distribute the CPU time among all the users

of a system in an orderly fashion.

The aforementioned concepts, methods, and techniques described above such as

virtual memory, time-sharing, multiprogramming, multitasking, etc. are still in use in
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modern operating systems. They are of practical use on mainframes, servers, and work-

stations wherein the goal is to maximize a computing system throughput, measured as

the number of tasks completed by unit of time. However, the operational model of su-

percomputers is different. A supercomputer focuses on computing power to do one task

(for a single user) involving numerically intensive calculations, such as the applications

mentioned in Chapter 1.

Over the last decade, computing systems based on commercialoff-the-shelf

(COTS) microprocessors and the Beowulf paradigm, or clusters, have dominated the su-

percomputing arena. Among other things, this domination has resulted in the adoption

of a conventional operating system such as Linux as the de facto standard kernel for high

performance computing.

In the past few years, when the processor count reached the thousand order mag-

nitude, supercomputer manufacturers and users began to notice application performance

loss due to interference of the operating system [50, 7]. While the community began to

question the appropriateness of Linux (or Linux-like) operating systems for high com-

puting systems, IBM decided to develop a custom kernel for the Blue Gene/L supercom-

puter [24]. Brightwell et al. also made both technical and social arguments against the

adoption of Linux for large scale computing systems, and they proposed a lightweight

kernel (LWK) instead [9]. They mentioned issues such as a lack of predictability when

the operating system preempts the application, and the adverse impact of virtual memory

in the communication library. They also expressed concern with the rapid developments

in the kernel, distributions, and development environments, in general. On the other hand,

Minnich et al. claimed that LWKs are optimized for one type ofapplication activity, and

they remove many needed capabilities such as file systems, sockets, and security. They

proposed a rightweight kernel (RWK) based on an off-the-shelf kernel (i.e. Linux) [43].

Following suit, IBM has recently launched a study to evaluate the effect of replacing the

custom kernel with Linux on the compute nodes of Blue Gene/L [53]. IBM claims that
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certain applications require capabilities such as those mentioned by Minnich. Beckman

et al. propose a third point of view [4]. They suggest that thefocus should be on the prob-

lems that will prevent high performance computing systems from reaching the Petaflop

barrier. Among others, they mention issues such as synchronization and collective opera-

tions, parallel I/O, and fault tolerance.

Regardless of whether the kernel is heavyweight (HWK), lightweight (LWK) or

rightweight (RWK), none of the previous work takes into consideration the importance

of the Program Execution Model, or the additional challenges to come with the arrival

of many-core architectures. On the other hand, the goal of our research is precisely to

identify the critical aspects of a Program Execution Model,in particular those likely to

become relevant when working with many cores. We also plan todemonstrate that the

Program Execution Model can be integrated into the low-level system software, primarily

for the reason that we believe said model should be an integral part of a computing system,

including high-end computing systems.

There is also a myriad of work related to the design and implementation of

thread libraries found in multithreaded runtime systems, or provided as stand-alone

thread packages such as: Coda [51], Pthreads [45], Quick-Threads [37], TAM [14],

uThreads [54], Converse [35], Lazy Threads [29], Nano-Threads [47], OpenThreads [31],

Active Threads [61], Cilk [28], NPTL [22], Cappricio [59].

These thread packages have been developed as part of the runtime system for mul-

tithreaded parallel programming languages. Their goals have been to provide portability,

interoperability and open implementation with regard to design decisions (e.g. schedul-

ing and preemption). To achieve portability across parallel machines and environments, a

number of them assume a common software substrate that the OSor a machine-dependent

layer will provide. Unlike them, TNT is a standalone user library that provides high ef-

ficiency at the expense of portability, running directly on top of the C64 architecture

without kernel support.
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Some multithreaded programming models rely on sophisticated compiler analysis

to achieve efficiency [14, 29]. On the other hand, TNT obtainsefficiency by integrating

hardware and virtual thread management.

The BlueGene/L Compute Node Kernel (CNK) also replaces the conventional

OS [24]. The kernel provides 2 modes of operation (coprocessor and virtual node modes)

aimed at maximizing the overlapping between computation and communication to expose

the parallelism that MPI and UPC, the programming models available for this system,

may expose. However, these programming languages allow to express fine-grain paral-

lelism. On the other hand, TNT supports multithreaded execution as the natural way to

make efficient use of the 160 processing elements in a C64 chip.

The implementation of the EARTH-MANNA multithreaded system runs directly

on top of the hardware without the assistance of the OS [33]. TNT is a flexible special-

purpose multithreaded library, whereas the EARTH-MANNA system was the specific

implementation of the EARTH program execution model. Additionally, the implemen-

tation of some key aspects of the EARTH model are not directlyapplicable to C64. For

instance, in EARTH-MANNA threads allocate their frame in the heap. In C64, such a

feature would result in poor performance because of the limited DRAM bandwidth.

Cyclops-64 is not the only system with shipping I/O. Blue Gene/L compute nodes

also ship I/O requests to the I/O nodes. However, in Blue Gene/L, I/O nodes are dedicated

for I/O and run a Linux kernel [24]y. On Cyclops-64, I/O nodesrun the TNT kernel

and forward I/O requests to the front-end cluster, where theI/O operation is actually

performed.

To the best of the author’s knowledge, there is not previous work similar to

RMEM. Maybe because the configuration of the C64 supercomputer, consisting on a

front-end cluster attached to a C64 back-end engine, is uncommon. However, we be-

lieve, RMEM provides the foundation of a programming environment for heterogeneous

architectures.
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Chapter 3

HARDWARE ARCHITECTURE

In the last decade, performance gain experienced by the end-user of commercial

computing systems was riding on advances in integrated circuits technology, in particular

on increases in clock speeds. Since the clock frequency is now constrained by issues such

as CPU power consumption and dissipation, computer architects started to look at better

ways to use the ever increasing transistor density. As the number of transistors on a chip

continues to double every two years, performance improvements are expected to come

from the development of multicore processors, among other innovations.

3.1 Coarse Multicore Architectures

Nowadays there are two trends in specifying and designing multicore architec-

tures. On one end, manufacturers of common-off-the-shelf processors take advantage of

the advances in the semiconductor manufacturing technology to reduce the size of a com-

mercial microprocessor and replicate several of these processors into the same die size.

This type of multicore architecture is also known as coarse multicore. By integrating

multiple cores into the same die, manufacturers provide customers with better perfor-

mance per watt solutions. However, these manufacturers aredeveloping few architecture

innovations. In particular, as the package pin count remains constant, so does the mem-

ory bandwidth. As a consequence, applications are more likely to notice the effect of

bandwidth and latency limitations on performance. In otherwords, in coarse multicore

architectures, applications will often have to face the Memory Wall problem [62, 42].
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Table 3.1: Examples of Many-Core Architectures

Manufacturer Processor Family No. of cores
IBM Cyclops-64 160 thread units
IBM Cell 1 PowerPC and 8 SPEs
Intel Tera-scale 80 cores
Intel Larrabee 16 – 24 cores
Nvidia Tesla GPU 128 streaming processors
ClearSpeed CSX600 96 processing elements
Cisco CSR Metro 192 processing elements
Tilera TILE64 64 processor cores

3.2 Many-Core Architectures

In addition to coarse multicore architectures, more recently there has also been an

industry trend towards the design and fabrication of fine-grain multicore or many-core

architectures. Compared to coarse multicore, many-core architectures integrate a much

larger number of small cores on a chip. In addition, fine-grain multicore chips come with

architectural innovations such as special purpose processing elements and novel intra-chip

interconnection devices. A large number of cores together with intra-chip communication

networks may provide the intra-chip parallelism and bandwidth required to tolerate the

impact of limited off-chip memory bandwidth.

Table 3.1 shows some examples of many-core architectures that are already avail-

able in the market or will be available soon. These processors have three common fea-

tures: (1) the processing elements are much simpler than a commercial-off-the-shelf mi-

croprocessor; (2) the processing element design is usuallygeared towards an application

domain; (3) while on-chip bandwidth is enormous, off-chip bandwidth remains limited.

3.3 Cyclops-64 Architecture

This research uses Cyclops-64 (C64) to illustrate the issues that many-core archi-

tectures are either facing or will face in the near future.
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Figure 3.1: Cyclops-64 Computing Environment

Cyclops-64 (C64) is a flexible special purpose supercomputer comprised of a host

connected to a C64 computing engine by a Gigabit Ethernet network, as shown in Fig-

ure 3.1. The host system (shown as consisting of a number of control nodes and front-end

nodes) supports application development and program execution as well as system ad-

ministration, monitoring, and boot. The file system, which may also contain multiple

(external) file server nodes, provides file support for the C64 supercomputer. The C64

back-end consists of 13,824 C64 blades arranged in a24 × 24 × 24 logical configura-

tion, see Figure 3.2. The peak performance of the C64 computing engine will exceed one

PetaFLOPS [17].

C64 nodes are arranged in a 3D-mesh network. A fraction of these nodes, labeled

as I/O nodes, use the Gigabit Ethernet port (present in all C64 chips) to connect the

C64 supercomputer to the host and external file systems. EachI/O node will service a

number of C64 nodes (called compute nodes) and relay requests and data between the

compute nodes and the host and file server systems. The I/O nodes and compute nodes

communicate via packets over the 3D-mesh network only. This3D-mesh provides the

high bandwidth necessary for inter-node communication in running application programs.
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Figure 3.2: Cyclops-64 Supercomputer

There is a separate control network that connects the C64 system to the host sys-

tem. This control network carries commands from the controlnodes to each C64 node.

A C64 node attaches to this control network via a special communication port. The host

system uses this control network to initialize the C64 system, monitor its status while pro-

grams are in execution, and reconfigure and restart C64 afterhardware failures. Details of

the initialization and configuration procedures are not thefocus of this research and will

be discussed elsewhere.

Each C64 blade consists of a C64 chip, external DRAM, and a small amount of

glue logic, as shown in Figure 3.3. A C64 chip employs a multiprocessor-on-a-chip ar-

chitecture containing 80 processors. Each processor contains two thread units, a floating-

point unit, and two SRAM memory banks of 30KB each. A thread unit is a simple 64-bit

in-order RISC processor core with a small instruction set architecture operating at a mod-

erate speed. In a C64 chip, there are 16 32KB instruction caches, each shared among five

processors. Each group of 4 instruction caches share a crossbar port. In a C64 chip archi-

tecture, there is no data cache. Instead a portion of each SRAM bank can be configured as
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scratch-pad memory. Such a memory provides a fast temporarystorage to exploit local-

ity under software control. Processors are connected to a crossbar network that enables

intra-chip communication, i.e. access to other processor’s memory and off-chip DRAM,

as well as enabling inter-chip communication via two communication devices, called the

A-switch and B-switch. The A-switch and B-switch connect each C64 chip to its nearest

neighbors in the 3D-mesh. The intra-chip network also facilitates access to special hard-

ware devices such as the Gigabit Ethernet port and the control network interface attached

to each C64 node.
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Besides its cellular organization, four distinct hardwarefeatures distinguish

Cyclops-64 from other general purpose processors:

• The computation to on-chip memory (160/4.6MB) and computation to off-chip

memory bandwidth (160/16GBps) ratios are much larger than in a commercial mi-

croprocessor. That is why we consider memory bandwidth a scarce resource and

thread units rather inexpensive.

• Execution is non-preemptive. While running on user state, acontext switch into

supervisor state might happen whenever an exception occurs. However, this is in-

tended as a protection mechanism only. In other words, the OSwill never interrupt
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the user program execution unless the user explicitly demands so (by executing a

supervisor call) or an exception occurs.

• There is no hardware virtual memory manager, which means thememory hierarchy

of the C64 chip is exposed to the programmer. Processors can directly address any

memory location of the non uniform shared address space formed by the on-chip

and off-chip memory banks within on a chip.

• In the C64 chip architecture there is no data cache. Instead,a portion of each

SRAM bank can be configured as scratch-pad memory. Such a memory provides a

fast temporary storage to exploit locality under software control.

Although the C64 has a special purpose ISA, for this researchwe only rely on

features we believe will be mainstream in future high dense multicore architectures. In

particular, we take advantage of the following two key features of the C64 architecture:

(1) an instruction set architecture design that incorporates efficient support for thread

level execution and a set of hardware supported in-memory atomic operations; (2) the

ability to configure a portion of every SRAM bank as scratchpad memory, providing a

fast temporary storage to exploit locality under software control.
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Chapter 4

CYCLOPS-64 SYSTEM SOFTWARE

The Cyclops-64 (C64) project questions fundamentally the suitability of conven-

tional operating systems to achieve high performance. Domain-specific application ex-

perts who have participated in the conception of all aspectsof the system software for the

C64 supercomputer mandated that Linux was not adequate. Their previous experience

with parallel applications that did not scale well for various reasons motivated us to de-

velop a standalone Thread Virtual Machine (TVM) from scratch. Its implementation in

the form of the TiNy Threads (TNT) library had the clear goal of allowing applications to

achieve full resource utilization [23].

The C64 programming environment and the first implementation of the TNT li-

brary have been in production use for the past two years. Morethan 15,000 programs of

various sophistication levels have been ported to, and implemented on, the C64 architec-

ture, and successfully tested in both simulation and emulation platforms. The experience

and feedback from the C64 community can be summarized as follows:

• For flexible special-purpose architectures such as C64, andfor high-end comput-

ing systems in general, a radical departure from the conventional OS is now being

seriously considered. High performance applications run exclusively on several

CPUs for extended period of times and require as little disruption as possible from

the OS, let alone from other users. Single-user operating systems implemented as

light-weight kernels that achieve full resource utilization by a single running pro-

cess will be commonplace in the near future [24, 17].
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• A wide range of issues from virtual memory management to protection between

concurrent processes need to be revisited. For an application to receive full resource

utilization, the system software must be non-intrusive to applications. There should

be no observable degradation in performance for applications that do not request

services from the runtime system.

• As long as a familiar programming environment is provided tothe user, applica-

tions do not require software virtualization that adds layers of software that are

not strictly required. For instance, the complexity of context switching on a con-

ventional OS that is needed for multitasking is unnecessarywhen a single process

application runs exclusively on a processor.

• Modern parallel programming languages exploit parallelism by means of multi-

threading. In some cases, a fairly large number of threads are created by the appli-

cation regardless of the number of processors or processingelements available.

4.1 System Software Architecture

In many supercomputing projects, when an OS such as Linux is ported to a new

architecture, a great deal of resources are spent trimming the OS’s functionality. The

objective is to ensure that services that are not strictly required interfere as little as possible

with the applications. This reduced functionality resultsin a lower computational noise,

which measures the degree to which an application is disturbed by the asynchronous

execution of daemons and other OS processes.

The C64 architecture does not support preemption or virtualmemory manage-

ment. These features allow the design of a non-intrusive system software. But they are

also essential aspects of a conventional OS. If porting and trimming an OS to a common-

off-the-shelf microprocessor architecture requires considerable effort, porting and trim-

ming an OS to the C64 architecture without the hardware features expected by the OS

would be formidable, to say the least.
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The C64 system software was designed taking into account thehardware archi-

tecture of the C64 supercomputer and the lack of a conventional operating system for

the C64 architecture. In addition, to achieve full resourceutilization, we decided that

only services that are performance critical (from the application standpoint) should run

on the C64 back-end. These services are provided by the TNT Thread Virtual Machine

described in Chapter 5. As a result of this design decision, file I/O operations are shipped

to the front-end, for instance. The standard C library provides the programmer with a

standard I/O interface. However, when a system call is executed, TNT encapsulates the

call arguments into a request and sends it to the front-end. Once the file I/O operation

is performed, the host sends the results back to TNT, which are then forwarded to the

application.

The remainder of this chapter highlights the features of theC64 system software.

Note that all the components described in the next sections,including the C64 toolchain,

run on the front-end cluster. TNT, the C64 Thread Virtual Machine, together with the stan-

dard C library and the communication libraries, are the onlycomponents that run on the

C64 back-end. This ensures that applications do not experience observable degradation

in performance if they do not request any service from TNT anda familiar programming

environment.

4.2 Host Software

This section outlines the system software that is specific tothe host, i.e., that

runs on the front-end cluster. We refer to it as the host control software and its three

main components are: job scheduler and launcher, resource manager and host to C64

communication.

4.2.1 Job scheduler

Like in other large computing systems [8, 48, 36, 56], the goal of the job sched-

uler is to maximize the utilization of the computing system by minimizing waiting and
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idle times. On C64, job scheduling supports both interactive and batch modes. A C64

system may be partitioned into development and production sections. For a fast turn-

around, the development partition may be used interactively while the production parti-

tion is restricted to batch submission. In interactive mode, users are granted access to a

small number of C64 nodes for the purpose of debugging and/ortuning their applications.

Batch jobs that users submit are put into a job queue by the queue manager process. Cer-

tain parameters are associated with each job, including priority and resource requirements

such as number of C64 nodes. Every time nodes in the production partition are released,

the job scheduler wakes up and decides which job runs next. The decision is made based

on the list of parameters submitted with the job as well as runtime factors such as time

waiting on the queue. In addition, the scheduler invokes a placement algorithm that de-

termines the set of C64 nodes assigned to run a job. Placementaccounts for faulty nodes

and guarantees the number of nodes that the user requested.

4.2.2 Resource manager

A resource manager is deployed to manage the system resources, including C64

and front-end nodes. Its objective is to minimize system downtime due to hardware fail-

ures and hence, to improve system utilization. On a system ascomplex as the C64 com-

puting environment, the sources of failures are numerous. For instance, a thread unit,

floating point unit, or memory bank of a chip may be bad. An entire chip may be inacces-

sible due to a malfunction of the A-switch or some link of the 3D-mesh may not work as

expected. The C64 system software and the resource manager,in particular, detect and try

to work around all these and many other issues. For instance,at boot time each C64 node

is thoroughly tested to determine its aptitude to run programs. C64 architecture provides

a hardware mapping table (accessible to the resource manager only) where bad compo-

nents are marked and effectively removed from the set of active elements. The resulting

chip with a reduced number of resources is still eligible forcomputation. Similarly, faulty

nodes and links may be assigned to partitions allocated to run jobs. However, these may
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be avoided by means of a routing algorithm. Given the nodes and links status information

generated by diagnostics programs run under the resource manager control, the role of

the routing algorithm is to find at least one path between any two C64 nodes in a partition

and among C64 and front-end nodes. The ability to remain operational despite hardware

failures is unique to the C64 architecture and provides a cost-effective solution with un-

parallel efficiency among common off-the-shelf microprocessor-based supercomputing

systems.

Additionally, the resource manager maintains a central database, which provides a

reliable and comprehensive view of the system. Such information simplifies the design of

the system software. For instance, the job scheduler requires the knowledge of bad chips

to ensure that the user requirement for a minimum number of working nodes is met. In the

event of a hardware failure, for instance a C64 chip stops responding during the execution

of a program, this view of the system allows recovery in minimum time. As soon as a

node within the partition where the job was running is identified as faulty, the remaining

C64 nodes are moved again to the pool of available resources.Notice that while the status

of a partition is verified, other jobs may be assigned to otherpartitions independently.

4.2.3 Host to Cyclops-64 communication

The C64 supercomputer is attached to the host system througha number of Giga-

bit Ethernet links. These links, in addition to the 3D-mesh,support all the communication

between C64 and front-end nodes. Therefore, system software developers are required to

handle the specifics of both Ethernet and A-switch protocolsto carry out any communi-

cation successfully. To avoid this trouble a uniform communication protocol layer, called

the Cyclops Datagram Protocol (CDP), is added. CDP providesa global address space

across the front-end host and the C64 back-end. Based on CDP,application level proto-

cols are implemented, including file I/O, debugging, performance monitoring and host to

C64 remote memory communication. For instance, when a C64 node attempts to open a
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file, a request is shipped to the front-end in the form of a CDP packet. At the host, a dae-

mon performs the operation on behalf of the back-end and sends the result (file handler)

back to the C64 node where the I/O operation originated. The C64 computing engine

always starts file I/O operations. However, there are services that the front-end initiates

instead. For instance, when a job is scheduled to start execution on a set of C64 nodes,

the job scheduler contacts the process control thread running on each C64 node and trans-

fers among other information the program’s image, the user environment, command line

parameters, etc. All this data communication relies on the CDP protocol as well.

When file I/O processing is expected to be intensive, it wouldnot be judicious to

allow the C64 side to drive the computation. That would result in numerous I/O requests

being shipped to the front-end that could easily make the Ethernet links the bottleneck of

the entire system. To cope with this situation, a novel computing paradigm is supported, in

which an application consists of two processes: one runningon the front-end, another on

the C64 back-end. The former is responsible for I/O and takescare of preprocessing and

off-loading computation to the latter, which accomplishesthe computational intensive

part. Once computation is done, if any post-processing is required the front-end will

handle it. We enable this scenario with a remote memory operations library (RMEM) that

facilitates inter-process communication (between host and C64 engine). According to our

current model, the application part running on the front-end cluster sends data to (push)

and gets results from (pull) the C64-side. All the communication and synchronization

primitives provided by the RMEM library are implemented on top of CDP.

4.3 Cyclops-64 Toolchain

Figure 4.1 illustrates the software toolchain currently available for application de-

velopment on the C64 platform. The C compiler has been portedfrom the GCC-4.1

suite. The assembler, linker and other binary utilities arebased on binutils-2.18. To

fully exploit C64 multi-layered memory hierarchy, the toolchain is designed to support

segmented memory spaces that are not contiguous. In other words, multiple sections of
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Figure 4.1: Cyclops-64 Software Toolchain

code, initialized, and uninitialized data may be allocatedon each memory region, just like

in some toolchains for embedded processors. To direct the allocation of sections, prag-

mas are provided to specify the memory areas where the user would like to place certain

variables or procedures. For instance, frequently used data structures can be put in the

scratchpad memories, closer to the processor/thread units. In general, applications should

be designed keeping in mind the on-chip and off-chip memories latency and bandwidth,

so that they make the best use of the memory. The current toolchain with pragma support

for segmented memory spaces is the first step towards this goal.

The standard C and math libraries are derived from those in newlib-1.16.0. Func-

tions (libc/libm) are thread safe, i.e. multiple threads can call any of the functions at the

same time. Nonetheless, mutual exclusion is guaranteed by efficient spin locks. In addi-

tion, memory functions have been optimized, taking into account the memory hierarchy

and C64 ISA support for multiple load and store operations that make more efficient use

of the memory bandwidth.

The TNT microkernel/runtime system library, discussed in detail in Chapter 5,

provides the software and application developer with the functionality to write multi-

threaded programs: thread management, support for mutual exclusion, synchronization
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among threads, etc. In order to achieve high performance andscalability, the implementa-

tion of such functionality tries to match the architecture underneath the microkernel/RTS

as closely as possible, as explained in the next section.

The CNET communication protocol is also part of the microkernel. This software

component controls the A-switch, and supports SHMEM, a one-sided communication

library, on top of it. SHMEM provides a shared global addressspace, data movement

operations between locations in that address space, and synchronization primitives that

greatly simplify programming on a multi-chip system such asC64.

To carry out our research until a hardware platform is available, we developed

FAST, an functionally accurate simulator of a multi-chip multithreaded C64 system. The

following section explains the FAST simulator.

4.4 FAST: Cyclops-64 Architectural Simulator

FAST is an execution-driven, binary-compatible simulatorof a multi-chip mul-

tithreaded C64 system. It accurately reproduces the functional behavior and count of

hardware components such thread units, on-chip and off-chip memory banks, and the

3D-mesh network, as shown in Table 4.1. The actual number of simulated chips is lim-

ited for practical reasons, because the memory corresponding to all the chips needs to be

allocated in the host machine.

Although FAST is not cycle accurate, we have shown that it is useful for perfor-

mance estimation [16]. In addition, FAST played a critical role in the system software

development process as it supported all C64 system softwaredesign, development and

testing for the past four years and helped in the verificationof the C64 logic design.

We developed FAST according to a modular approach, such thatadditional fea-

tures could be easily incorporated into the existing design. To help the architecture team

with the verification of the C64 chip design, the simulator executes instructions (4.4.1),

models the architecture exceptions (4.4.2), reproduces the C64 memory map (4.4.3) and

produces histograms of the instruction mix as well as detailed traces of all instructions
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Table 4.1: Simulation Parameters

Component # of units Params./unit
Threads 160 single in-order issue,

500MHz
FPUs 80 floating point/MAC,

divide/square root
I-cache 16 32KB
SRAM (on-chip) 160 30KB
DRAM (off-chip) 4 256MB
Crossbar 1 96 ports, 4GB/s port
A-switch 1 6 ports, 4GB/s port

PIB

I−cache

Global DRAM

Memory

SPM

Decode

Mem

Commit
File

Register ALU

Fetch

Figure 4.2: Four-Stage Instruction Pipeline

executed (4.4.4). For the purposes of early system and application software design and

evaluation, FAST also accounts for memory and interconnectcontention (4.4.5), and sup-

ports intra-chip communication through the A-switch device (4.4.6). Finally, an overview

of the simulator internals is provided (4.4.7).

4.4.1 Instruction execution

FAST simulates the four-stage pipeline employed in the C64 architecture, as

shown in Figure 4.2.

At the first stage of the pipeline, an instruction (see Table 4.2) is fetched from the

program instruction buffer (PIB) and decoded. FAST may account for the access to the

PIB and, should a miss occur, the subsequent delay while the instruction is read from the
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Table 4.2: Cyclops-64 Instruction Set Summary

Core Integer and Branch Floating Point
Load, Store Add, Subtract
Load, Store Multiple Multiply, Divide
Add, Subtract [Immediate] Multiply and Add
Multiply, Divide Conversions
Compare [Immediate] Square Root
Trap on Condition [Immediate]
Logic [Immediate]
Shift [Immediate]
Shift left 16 then OR immediate
Insert, Extract
Move if Condition
Branch on Condition
Branch and Link
Exotic Control
Bit Gather (permute bits) I-Cache Invalidate
Count Leading Zeros Move From/To SPR
Count Population Return from Interrupt
Parity Sleep
Load then Op Stop
Move Indirect (register-register)Supervisor Call
Multiply and Accumulate

instruction cache or memory. Whenever the branch prediction is incorrect, execution in

a thread unit stalls for three cycles while the pipeline is flushed. However, FAST does

not reflect the operation of the branch predictor and regardsall conditional branches as

correctly predicted.

In the second pipeline stage, the instruction input operands are read from the reg-

ister file. For all the C64 instructions, except the floating multiply and add (FMA), one or

two register operands are read in one cycle. FMA instructions have three input operands;

hence, an extra cycle is required to read the third operand since the register file has two

read ports.
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In the third stage, the instruction is executed. RISC-like instructions such as inte-

ger, floating-point, branch and memory operations are modeled, based on execution times

expressed byx/d pairs, wherex is the execution time in the ALU, andd represents the

delay before the result of the instruction becomes available. Instruction timing reported

in Table 4.3 is based on information provided by the C64 chip design team. For instance,

signed integer division is said to take one cycle in the ALU, but a subsequent instruction

will not be able to use the result until 69 cycles later. During this delay, execution of

independent instructions can proceed normally. However, if the result of an instruction

is to be used by another instruction before it is available, the pipeline will stall. It is the

compiler and programmer’s responsibility to cover these delays as much as possible with

the appropriate instruction scheduling.

The result is finally committed in the fourth stage if no exception is generated.

Otherwise, a context switch causes execution to continue from the address specified by the

interrupt vector. When the results are to be written, conflicts may occur, since the register

file has two write ports. However, these events are not expected to happen frequently and

FAST does not account for them.

In terms of instruction execution, FAST allows thread unitsto fetch, decode and

execute instructions independently, following the sequence of events dictated by each

thread’s instruction stream. However, care needs to be taken for some special instruc-

tions. The sleep instruction, the wakeup signal, the inter-thread interrupt, etc., all imply

a synchronization between threads. For instance, a thread unit, while asleep, does not

execute any instructions. During this time, the simulator will not update its clock counter.

When a wakeup signal is received, the clock counter is set to that of the remote thread

that executed a store in the wakeup memory area (plus some delay). To handle these syn-

chronizations, threads will commit instructions once the simulated chip clock reaches the

time point at which the instruction is executed by the thread. In other words, although

instructions are executed asynchronously, they are committed in a synchronized fashion.
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Table 4.3: Cyclops-64 Instruction Timing

Instruction type x d
Bit gather 1 1
Branches 2 0
Count population 2 0
Integer multiplication 1 6
Integer division signed 1 69
Integer division unsigned 1 68
Integer remainder signed 1 70
Integer remainder unsigned 1 69
Move indirect register 3 0
Floating add, subtract and conv. 1 5
Floating multiplication 1 6
Floating multiply and add 1 11
Floating divide double 1 63
Floating divide single 1 34
Floating square root double 1 62
Floating square root single 1 33
Floating mult. and accumulate 1 6
Memory operation (local SRAM) 1 2
Memory operation (global SRAM) 1 31
Memory operation (off-chip DRAM) 1 57
All other operations 1 0

4.4.2 Exception handling

Exceptions are thread-specific events. Some are caused by instructions and trigger

what we call synchronous interrupts that cannot be disabled. For instance, an attempt

to execute an instruction with an invalid opcode generates an illegal interrupt. Others,

known as asynchronous, are caused by events such as a timer alarm and can be disabled.

While disabled, only the first exception of each type generated by a sequence of events is

held pending; subsequent ones are lost. Throughout the instruction’s execution, multiple

exceptions of both classes may occur. FAST checks for exceptions at the end of the

execution stage. Before the results are written, if one or more enabled exceptions exist,
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FAST generates an interrupt according to the priority orderspecified by the architecture.

4.4.3 Segmented memory space

The C64 chip hardware supports a shared address space model:all on-chip SRAM

and off-chip DRAM banks are addressable from all thread units/processors within a chip.

That is, all threads see a single shared address space.

Architecturally, each thread unit has an associated 30KB SRAM bank. Each mem-

ory bank can be partitioned (configured) into two sections: one called the “global” (or

“interleaved”) section, the other the “local” (or “scratchpad”) section. All such global

sections together form the (on-chip) global memory in an interleaved fashion that is free

of holes and uniformly addressable from all thread units. Although scratchpad memory,

global memory and off-chip DRAM memory are addressable fromany thread within the

chip, the access is not uniform. Besides having different latencies, these three memories

have a separate address space, resulting in a three-level hierarchy. Furthermore, there

is no virtual memory manager in the C64 architecture, hence,this memory hierarchy is

directly exposed to the programmer.

The FAST simulator accurately reproduces the C64 memory mapby implement-

ing the above-mentioned, non-uniform shared address space. It also includes the address

upper limit special purpose registers (AULx) that define thehighest existing location in

scratchpad memory, global memory and DRAM memory, respectively. FAST also imple-

ments three protection boundary special purpose registers(PBx). These registers define

regions in scratchpad, interleaved, and DRAM memory that can only be written in su-

pervisor state, which effectively provide a basic mechanism to protect the kernel against

il-behaved programs. In FAST, all memory-specific parameters, such as the number of

banks, size of each bank, latency, and bandwidth, are easilyconfigurable.
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4.4.4 Execution trace and instruction statistics

Given the appropriate command line option, the toolset generates the execution

trace of a program. There are two mechanisms to select the instructions that are to be

stored in the trace. The user can either specify the time interval (in clock cycles) for which

the program execution is to be traced, or enclose the instructions to be output to the trace

within TraceOn/TraceOff macros. These macros access unarchitected special purpose

registers (SPRs) that control the simulator’s functionality, but are not present in the C64

chip design. The output, consisting of a text file per active thread on the C64 system,

contains detailed information such as clock cycle, instruction executed, source and target

register values, address of the memory location touched by the instruction, if applicable,

and specific information regarding events that could have delayed the execution of the

instruction (contention in the crossbar network, operand not available yet, etc).

FAST may also collect instruction statistics over an execution interval and produce

histograms of the instruction mix. Similar to the procedureavailable for tracing, the

user can specify an interval in clock cycles or use StatsOn/StatsOff macros to start/stop

collecting statistics, respectively. A combined report for each node, as well as individual

reports for all active threads, are generated.

4.4.5 Memory and interconnect contention

One of the latest additions to the FAST simulator is a module that accounts for the

contention in the crossbar network and in the memory system.

Figure 4.3 illustrates the data path between processors andmemory banks on a

C64 chip. Every memory instruction executed on a processor results in a network packet

delivered by the crossbar network to the appropriate memorybank (global SRAM or off-

chip DRAM). For load operations, the memory replies with another packet containing the

data retrieved from memory.

In order to obtain reasonable accuracy without increasing too much the simulation

time, FAST models the following sources of contention.
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Figure 4.3: Interconnection to the On-Chip Crossbar

• Packets issued by threads on the same processor are queued ona 7-slot FIFO (pro-

cessor buffer) until they are retrieved by the crossbar. If athread issues a memory

operation when the FIFO is full, the pipeline will stall until space is available.

• The crossbar retrieves packets from the input ports and delivers packets to the out-

put ports, one per cycle. If at the same cycle, two packets areto be delivered to the

same output port, the crossbar blocks one of them arbitrarily.

• Between the crossbar and each memory bank, there is another 7-slot FIFO (memory

buffer) where packets are held until processed by the memory. Whenever this buffer

becomes full, the crossbar stops delivering packets to thisdestination. At the same

time, it stops retrieving packets from any input that tries to send packets to the

blocked output port.

• Memory latencies are also taken into account. SRAM memory banks can perform a

load or store operation every cycle, i.e., 4GB/s per bank. Whereas DRAM memory

can sustain a much lower bandwidth. DRAM memory consists of four banks, and

each bank is subdivided into four subbanks. Subbanks can service requests simul-

taneously, one every 57 cycles, on average. While a memory subbank is in service,
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any incoming request is held pending in the memory buffer. Therefore, the DRAM

bandwidth is 2GB/s for single loads and stores. For multipletransfers, using load

multiple (LDM) and store multiple (STM) instructions, the DRAM bandwidth is

16GB/s instead.

4.4.6 A-switch device

In FAST, the functioning of the A-switch communication device is simulated at a

functional level only. When a chip has an A-switch message tosend, the simulator copies

the whole message directly to the destination node. In otherwords, the simulator does not

model the details of all the hardware mechanisms involved intransferring packets, double

word by double word, through the 3D-mesh network.

In addition to not accounting for the interaction among multiple C64 chips, FAST

does not account for the interaction between the A-switch and the crossbar network. Send-

ing or receiving messages via the A-switch does not cause anydisturbance in the crossbar

network. Therefore, performance estimations obtained with FAST for multi-chip simula-

tions should be regarded as less accurate than single-chip simulations.

4.4.7 Simulator internals

The simulated C64 system starts running when one of the threemain simulator

functions is called. To maximize performance, each function specifically handles a C64

system consisting of a single processing core, a C64 chip fully populated, or a system built

out of several nodes. Therefore, the decision is simply based on the system configuration.

In multi-node simulations, the main function starts with a loop that iterates over

all the active threads on all the nodes. Each thread unit attempts to execute an instruc-

tion. For a new instruction, the simulator calls functions responsible for the instruction

fetch, instruction decode, read the input operands from theregister file, and instruction

execution. If the thread unit is asleep, stalled waiting foran operand or due to a resource

hazard, or waiting to commit the previous instruction, it does nothing but return.
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Back in the main function, the chip clock is moved forward, just enough to allow

one thread unit, at least, to commit the current instruction. Once the clock is updated, the

crossbar and memory banks proceed to flush packets and memoryoperations that are to

be performed by this time.

Then a second loop iterates over all the threads, regardlessof their status. First,

thread units check whether an exception occurred, and if it did, the corresponding inter-

rupt is serviced with the appropriate context switch. If no interrupt was triggered, they

try to commit the last instruction. At this stage, threads compare the chip clock with their

own internal clock. When the execution on the chip reaches the time step at which a

thread can commit an instruction, the results are written. Otherwise, the thread waits.

Finally, after the status of the A-switch is updated, execution returns to the begin-

ning of the main loop. The process is repeated until thread units on every node execute

the STOP instruction in supervisor state.

To simplify the communication among components of the simulator, the repre-

sentation of the simulated C64 system is kept in a single multi-level data structure. At

the chip level, it contains information regarding thread units, floating point units, on-chip

SRAM and off-chip DRAM memories, I-caches, the crossbar model, and the A-switch.

At the thread level, it accounts for general, special purpose, and accumulator registers, in

addition to timing information as to when the value stored ina general purpose register

will be available, the last decoded instruction, program counter, exception flags, thread

status, and a third-level data structure with statistics counters.
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Chapter 5

TNT: CYCLOPS-64 THREAD VIRTUAL MACHINE

In this chapter, we present the design and implementation ofTiNy Threads (TNT),

the Thread Virtual Machine for the Cyclops-64 architecture. We highlight the features of

TNT as follows:

• TNT replaces the conventional OS with a custom-made kernel:Instead of trimming

a conventional OS such as Linux, the C64 kernel and the TNT library have been

implemented from the ground up. Only the functionality thatis crucial to achieve

and sustain high levels of application performance has beenincluded.

• TNT is a non-intrusive runtime system: TNT is implemented asa user-level library

that manages the hardware resources directly. TNT supportsa non-preemptive

thread execution model needed for applications to achieve full resource utilization.

• TNT provides an efficient Linux-like programming environment: TNT relocates

services to the user-layer to simplify the runtime softwareenvironment and to make

it more efficient. TNT also supports a familiar fork/join programming API for quick

prototyping of parallel applications.

• TNT supports the development of program execution models: TNT does not impose

any limitation on the number of threads available for parallel programming models

and applications. TNT seamlessly orchestrates dozens of hardware thread units and

thousands of virtual threads with high efficiency.
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Given the C64 special hardware features described in Chapter 3, it is not our in-

tention to develop a conventional OS for this platform. Instead, we focus our efforts on

the design and implementation of a Thread Virtual Machine that provides a familiar but

efficient application program interface. In the following sections we discuss the design

and implementation of TNT. In Section 5.1, we present a high level overview of the three

key components of the C64 TVM; thread, memory, and synchronization models, and we

discuss implementation details in Section 5.2.

5.1 TNT Design

The Cyclops-64 Thread Virtual Machine (TVM) can be seen as anmulti-chip

multiprocessor “extension” of the C64 ISA. It has been designed to replace the OS with

a narrow interface layer. Such a layer of system software directly manages the hardware

resources and provides an interface that shields the application programmer from the

complexity of the architecture whenever possible. However, unlike a conventional OS, a

TVM exposes those resources that are critical to achieve performance.

The C64 TVM not only provides an abstraction layer and the application program

interface expected by programmers, it also provides the common baseline for future re-

search on program execution models. In Chapter 6, we illustrate how a memory-adaptive

program execution model can be mapped to the TNT TVM to efficiently run without

interference from the OS.

The C64 TVM includes three components: a thread model, a memory model and

a synchronization model, as well as their corresponding APIs. The thread model presents

thread management issues. The memory model includes the specification of the consis-

tency model for the C64 system. The synchronization model describes the functionality

to implement mutual exclusion regions, and perform direct thread-to-thread and barrier

type of synchronization.
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5.1.1 Thread Model

A program section, namely a function, can be declared as a thread. A thread can be

activated for execution by binding to a hardware thread unitwithin a certain chip, a thread

activation pointer. This activation pointer is defined as the tuple:<program pointer, state

pointer>. The program pointer is the address specified by the program counter associated

with the corresponding hardware thread unit, and the state pointer is the thread specific

information stored in the C64 memory map (e.g. stack pointer, etc.)

A thread activation pointer can also be “global” if the thread handler is extended

with a node (or chip) identifier; a system-wide identifier of the chip where the correspond-

ing thread unit resides. The binding of a thread activation to a thread unit can be dynamic

as long as the system software properly maintains the binding information.

Thread model API

In the first release of TNT, we provided an interface inspiredby the popular

Pthread model, to ease application and system software developers’ first hands-on ex-

perience. Initially, the user is responsible for creating,terminating and synchronizing

threads by inserting appropriate function calls to the TNT runtime library. Subsequent

releases, in addition to the Pthread-like model, supporteda Single Program Multiple Data

(SPMD) style of execution. In this mode, TNT spawns all the threads available on a chip

when a program starts running. In this mode, the user has the option to reserve a number

of thread units for other purposes. The SPMD mode of execution demands less effort

on behalf of the programmer, since TNT automatically manages all the threads. We now

describe some functions that are part of the TNT API.

• tnt create(tnt desct *th, const void *(*fn)(void *), const void *arg)

Runs the user provided function (fn) in the next available thread unit. If the thread

cannot be spawned the function returns an error condition, otherwise it returns 0

andth points to a thread unique identifier (descriptor). One parameter (arg) can

be passed to the thread function.
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• tnt exit(const void *rc)

The caller thread terminates its execution returning and the exit code specified by

rc is made available to any successful join with the terminating thread.

• tnt join(const tnt desct th, void **th ret)

The caller waits for the target thread to terminate. If it returns successfully, the

value passed totnt exit by the terminating thread will be placed in the location

referenced by the parameterth ret.

• tnt self(void)

Obtains the descriptor of the current thread.

5.1.2 Memory Model

TNT employs a memory consistency model close to the underlying C64 architec-

ture support.

The most widely accepted memory model for the multiprocessor machine is Lam-

port’s sequential consistency (SC) model. Lamport described it in the following well-

known statement:

[A system is sequentially consistent if] the result of any execution is the
same as if the operations of all the processors were executedin some se-
quential order, and the operations of each individual processor appear in this
sequence in the order specified by its program order [40].

The above quote becomes the commonly used definition of sequential consistency

in most textbooks and research papers.

Under the current C64 single-chip architecture design, thefollowing two condi-

tions are valid:

1. Each processor issues memory requests in the order that its program specifies.
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2. Two operations designated to the same memory module M willbe delivered to M’s

input FIFO queue in the same order as they entered into the network.

Notice the latter refers to the time a memory request enters into the network, not

when it is issued by a processor, and it is true due to the equal-latency property of Cyclops’

intra-chip network.

It has been shown that the above two conditions are sufficientto ensure that the

C64 architecture behaves as sequentially consistent [63].Because the C64 architecture is

sequentially consistent, there is no need to issue fence-like instructions after each memory

operation to ensure SC.1 However, the hardware cannot guarantee a “Lamport order” of

the accesses to the scratchpad memory space; hence no sequential consistency can be

assumed.

Each thread has a private memory region (in scratchpad memory), which can be

used by the thread as its local storage for shared variables that reside in the shared memory

space. The allocation, management and synchronization needed to keep the consistency

between shared and private memory is solely the user’s responsibility.

5.1.3 Synchronization Model

TNT synchronization model includes support for several types of synchroniza-

tions. The first type of synchronization is used to ensure mutual exclusion of memory

accesses to shared memory locations/space. This can be expressed using TNT lock and

unlock operations, which are directly implemented using C64 hardware atomic test-and-

set operations. Users can declare spin lock variables usingthe TNT library and operate

upon them with the functions provided for that purpose. In addition to spin locks, TNT

supports the mutex construct. It is up to the programmer to decide which construct is

more appropriate given the application at hand.

1 In fact C64 has no sync instruction.
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1 void producer(tnt_desc_t consumer_th)
2 {
3 while(1) {
4 produce_data();
5 tnt_signal(consumer_th);
6 }
7 }
8
9 void consumer(tnt_desc_t producer_th)

10 {
11 while(1) {
12 tnt_wait(producer_th);
13 consume_data();
14 }
15 }

Figure 5.1: Producer-Consumer Sample Program

A second type of synchronization in TNT is introduced to express precedence

relations between operations from two different threads. In TNT there is a signal-wait

type of synchronization that will be placed between a pair ofspecific program points

within the two threads.

The sample program in Figure 5.1, based on a producer-consumer model, shows

the basic use of the signal/wait primitives. Theproducer thread produces data that the

consumer thread consumes. The latter starts by callingtnt wait and blocks until

a signal from the thread, whose thread handler matches that given as argument to the

function, is received. The former produces a datum and sendsa signal to the thread,

whose thread handler is specified bytnt signal’s only parameter. Once the signal is

received, theconsumer thread is awakened and consumes the datum.

A third type of synchronization is a collective synchronization in which a group of

threads will participate. For example, a barrier synchronization primitive can be invoked

by a group of threads. Threads block until all participants in the operation (participants

are defined by a single object passed as parameter to the barrier function) have reached

this routine.

The function in Figure 5.2 is part of a TNT program that uses a barrier primitive.

Multiple threads execute theworker routine, which starts with each thread generating
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1 void worker(int set_id, tnt_barrier_t barrier)
2 {
3 produce_data_set(set_id);
4 tnt_barrier(barrier);
5 if (set_id == 0)
6 reduce_data_set();
7 }

Figure 5.2: Barrier Sample Program

some data according to a thread-specific parameter. Once allthe data has been generated,

an unspecified operation is applied to it (in our example it issome type of reduction).

Before the operation can be applied, we must ensure that all threads have produced the

corresponding data. For that purpose, we call thetnt barrier function, so all threads

block until all the threads participating in the barrier reach the same point before contin-

uing.

5.2 TNT Implementation

The TNT library defines two layers of thread management: the hardware thread

layer and the software or virtual thread layer, as shown in Figure 5.3. The hardware layer

provides direct access to the hardware resources. It manages the hardware thread units

(HT) and implements a non-preemptive, thus non-intrusive runtime system. The virtual

layer handles thousands of software or virtual threads (VT)on behalf of the application.

It provides a familiar fork/join programming API that is simple to use, yet sufficiently

general to write multithreaded applications. The integration of these two simple, but well

structured layers of thread management,2 makes it possible to replace a conventional OS

with TNT on C64. We now describe these two layers in more detail.

5.2.1 Hardware Threads (HT)

The hardware thread units can be idle or active. While idle, athread unit remains

asleep so that it consumes little power and does not waste memory bandwidth. Once

2 Less than 3,000 lines of code including header files and comments.
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active, a thread unit starts running the user program. The hardware thread layer supports a

non-preemptive thread execution model. Once a thread unit starts running, it will continue

until the user explicitly relinquishes control over the thread unit or the program performs

an illegal operation (core dumps).

Upon initialization, each physical thread unit is given control over its own scratch-

pad memory. The 32 bytes at the beginning of the scratchpad memory are reserved for

the hardware thread descriptor. The scratchpad memory areaabove the reserved area is

allocated for the thread stack. The compiler and runtime system share a general purpose

register, which points to the end of the stack and beginning of the reserved area. This

register is used for two purposes: (1) check for stack overflows, (2) provide a fast self-

identification mechanism for hardware threads. The TNT library allocates one stack per

hardware thread unit at boot time. Therefore, when a software thread is about to start or

terminate execution the stack does not need to be relocated,which allows faster thread

management.
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5.2.2 Virtual Threads (VT)

The virtual layer receives requests to create and/or terminate software or virtual

threads (VT) as required by the application. To manage the software threads, the vir-

tual library defines a thread descriptor that is usually allocated in the on-chip memory.

If needed, virtual descriptors could be allocated in off-chip memory as well. The vir-

tual layer leverages on the fast self-identification methodprovided by the hardware layer.

When a virtual thread is bound to a thread unit, pointers in the hardware and virtual

thread descriptors are setup to point to each other. In this way, self-identification of a

virtual thread involves identification of the thread unit and dereferencing the pointer to

the virtual descriptor.

Once ready for execution, virtual threads are bound to hardware thread units as

they become available. When this happens, TNT implicitly assigns the stack associated

with the thread unit to the virtual thread. This method of stack assignment, together with

the fast self-identification mechanism, are the two characteristics for whichDescriptor

on Stack (DOS) enabled libraries are known to be fast [58]. Upon thread termination,

TNT reuses the stack, which was assigned to the hardware thread unit at boot time, to run

the next virtual thread. In that sense TNT is memory efficientlike Lazy Stack Allocation

(LSA) + Direct Stack Reuse (DSR) enabled libraries [58].

5.2.3 Thread Scheduling

From a scheduling standpoint, one of the features of TNT worth noting is that

hardware and virtual threads are scheduled at the same time.Since thread execution is

non-preemptive, a virtual thread can only run when a hardware thread unit is available,

and a thread unit remains active as long as there are virtual threads to be executed.

The thread scheduling algorithm that the TNT library implements is as follows.

To launch the user application the runtime system creates a virtual thread descriptor for

the main function of the program and schedules the master thread to start its execution.

After the main function returns, the master thread is rescheduled and starts retrieving work

44



with the other hardware thread units. While the program is running, the virtual layer may

receive a request to spawn a thread. After creating a descriptor to handle the new software

thread, the virtual layer calls the hardware layer, which determines whether a hardware

thread unit is available. If a thread unit is idle, virtual and hardware threads are bound and

execution starts immediately. Because execution is non-preemptive, any virtual thread

runs to completion on the thread unit initially assigned. The hardware thread is awakened

and given the address of the virtual thread’s entry point. However, if there are not thread

units idle, i.e. all the thread units are active already, thethread descriptor is pushed to

a queue of virtual threads ready to run. Once a software thread finishes execution, the

virtual descriptor is recycled and the thread unit is returned to the runtime system. The

hardware unit then checks whether threads are waiting to run. If there are no threads

ready at that moment, the hardware unit goes to sleep, until another request is received.

If virtual threads are pending for hardware resources, the hardware unit is reassigned to

a new virtual thread and execution starts without suspending the hardware thread. Once

all the virtual threads have been executed and the hardware thread units do not have more

work to do, the TNT library returns control to the C64 kernel.

TNT does not implement the scheduling algorithm in a centralized fashion. In

other words, the TNT library does not reserve a thread unit tocarry out the task of schedul-

ing hardware and virtual threads. To minimize overhead and achieve scalability, the TNT

runtime system allows any thread unit that returns to the runtime system to run the thread

scheduler code. As a consequence, requests for thread creation may arrive at the same

time a hardware thread unit is being recycled and trying to determine whether software

threads are ready. In some rare conditions, it is possible that the hardware thread gets

suspended and goes to sleep assuming there are no additionalvirtual threads, at the same

time a virtual descriptor is pushed into the virtual ready queue assuming no hardware

resources are available. However, as soon as the application attempts to spawn another
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virtual thread, the thread unit that mistakenly remained idle will be awakened. In a sys-

tem with only two thread units, the above situation implies atemporary loss of 50% of the

hardware resources. On a multicore architecture such as C64with 160 hardware thread

units, the loss is negligible so did not implement a work around to avoid introducing

additional overhead in the thread scheduler.
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Chapter 6

MAGMA: A MEMORY-ADAPTIVE MULTITHREADED

ARCHITECTURE MODEL

This chapter defines the MAGMA (Memory Adaptive Multithreaded Architec-

ture) Program Execution Model (PXM) as the interface between users (e.g. programmers

and compilers) of high-level languages, and the implementation of a computing system.

An abstract model describing the operations involved in theexecution of a multithreaded

program on a Cyclops-like cellular architecture illustrates this definition.

MAGMA proposes a memory-centric computing model (as opposed to a

processor-centric model), in which the memory latency and bandwidth determine the

computing pace. The relationship between processors and memory is organized for paral-

lel applications to effectively manage and tolerate the latency and bandwidth constraints

of the multi-level memory hierarchy present in modern cellular computing systems.

Section 6.1 provides an overview of the MAGMA Program Execution Model and

illustrates its basic features through program examples. Section 6.2 precisely defines

the MAGMA Program Execution Model, including the thread model and the MAGMA

operations. Section 6.3 describes MAGMA main features by comparing the MAGMA,

EARTH and Cilk models.

6.1 Introduction to MAGMA

This section introduces the basic features of the MAGMA Program Execu-

tion Model and illustrates their use through program examples. It begins with sim-

ple but illuminating examples (the ubiquitousHello World program and simple
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1 #include <stdio.h>
2 #include <magma.h>
3
4 void print_hello(void)
5 {
6 printf("From PE %d: Hello World!\n", MY_PE);
7 }
8
9 void main(int argc, char *argv[])

10 {
11 int i;
12 for (i=0; i<NUM_PES; i++) {
13 SPAWN(print_hello);
14 }
15 }

Figure 6.1: MAGMA Hello World Program

Producer-Consumer programs) and ends with a small but real application,daxpy, a

level 1 BLAS routine that computes a linear combination of two vectors. We intention-

ally leave the discussion of the advanced features for Section 6.3.

6.1.1 Thread Execution

Like sequential programs, MAGMA programs have amain function. This func-

tion accepts the same arguments as the sequentialmain. When a program starts run-

ning, the first thread that the system spawns executes themain function. However, a

MAGMA program does not necessarily stop running aftermain returns. On the con-

trary, a MAGMA program runs as long as threads spawned by the application remain

active, unless the program purposely exits or aborts the execution.

Figure 6.1 shows the code for a simpleHello World program. In lines 12–13,

themain function tries to spawn a thread on each processing element of the machine.

TheSPAWN command starts execution of a thread function on any available processing

element. TheSPAWN arguments consist of the name of the function we intend to runand

the function’s arguments.

In MAGMA, threads cannot return a value. For this reason, in lines 4 and 9 the re-

turn type is simplyvoid. When the program creates a thread, MAGMA allocates a frame
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Figure 6.2: MAGMA Thread States

from the heap for a thread handle. However, the handle is onlyneeded until the thread

starts running. Right before that happens, the informationstored in the thread handle,

such as the thread arguments, is copied to the runtime stack and the handle is released. In

MAGMA, thread execution is non-preemptive. Once a thread starts execution, it runs to

completion. Unlike a sequential function, a thread can be spawned without providing all

the arguments at the thread invocation site. However, the thread will not start execution

until all the arguments are available, as if they had been supplied when the thread was first

invoked. Continuing with theHello World example,print hello does not have any

arguments. This means that this thread function can start running immediately, as long as

there is a processing element available.

TheSPAWN command creates a thread. Arguments will be produced eitherbefore

or after the call toSPAWN, in which case they can be provided either when the thread

is spawned or afterward using thread synchronization operations. We say a thread is

logically enabled after values for all the thread parameters have beensupplied. Until

then, we say a thread isdormant. If a thread islogically enabled, it can be scheduled for

execution. As we explain in Section 6.1.3, MAGMA allows the user to specify a stronger

condition before a thread can be fired. That is when a thread isnot onlylogically enabled

but it is alsophysically enabled.

Figure 6.2 shows the complete state diagram for a MAGMA thread. When a

thread is invoked and all the arguments are initialized, thethread begins in theenabled

state. However, if an argument is left uninitialized, the thread begins in thedormant

state. Once the values for all the arguments are produced, adormant thread becomes
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enabled and is scheduled for execution. Anenabled thread is moved to theactive state

when a processing element, on which the thread runs, is available. When anactive thread

completes execution, the runtime system moves it to theterminate state.

To help a program determine at runtime the number of processing elements avail-

able, as well as the processing element where a thread is running, MAGMA defines the

following two integer constants:

• NUM PES – The number of processing elements that are executing the program.

• MY PE – The identifier of the processing element (0≤ MY PE ≤ NUM PES-1).

These constants are initialized when the program is loaded and cannot be mod-

ified throughout the program execution. Given a machine witha number of processing

elements, theHello World program will output as many “From PE #: Hello World!”

strings as there are processing elements. However, it is quite possible that we observe

duplicates of PE values; in other words, a processing element may print more than one

message. TheSPAWN command creates a thread on behalf of theHello World program

that starts execution in the first processing element that becomes available. It is possi-

ble that a thread completes execution ofprint hello by the time themain function

spawns another thread. In this case, MAGMA may spawn the second thread on the same

processing element; that is why we see duplicate PEs. In addition, theHello World

program runs until all the threads spawned by the program complete. That means that by

the timemain returns in line 15,NUM PES threads would have been executed and output

a message to the terminal.

6.1.2 Thread Synchronization

In this context, synchronization refers to the mechanism that allows the program-

mer to impose a certain order in which threads execute. For instance, if we have two

threads,THREAD 1 and THREAD 2, and there is a data dependence to indicate that
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Figure 6.3: MAGMA Thread Handle

THREAD 1 must produce a datum to be consumed byTHREAD 2, then we must use

synchronization to guarantee thatTHREAD 1 executes and produces the needed datum

beforeTHREAD 2 can start.

In MAGMA, synchronization slots handle thread synchronization, and are the key

element of the thread handle. In addition to the thread activation pointer, the thread han-

dle has as many slots as the function has arguments, as well asa synchronization counter,

see Figure 6.3. Arguments for whichSPAWN provides a value are copied into the cor-

responding slot of the thread handle. The remaining slots are left uninitialized, waiting

for the value to be supplied at runtime. These are the synchronization slots. In addition,

the synchronization counter is initialized with the numberof synchronization slots. Only

when the synchronization counter reaches zero is the threadeligible to start execution.

The thread handle shown in Figure 6.3 represents a snapshot of the threaddaxpy fn’s

handle, as shown in Figure 6.6. The synchronization counteris initialized to 2, since the

addresses of vectorsx andy are to be provided at runtime. After the address of vectorx

is provided, the synchronization counter is decreased to 1.This is the state depicted in

Figure 6.3.

As noted above, threads run to completion. However, before athread is scheduled

for execution, values for all the thread parameters have to be supplied. When a thread

is spawned, some arguments may not be available. An argumentthat is not provided at
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1 #include <magma.h>
2
3 void producer(SYNC_SLOT int sync_result)
4 {
5 int result = produce();
6 DATA_SYNC(result, sync_result);
7 }
8
9 void consumer(int result)

10 {
11 consume(result);
12 }
13
14 void main(int argc, char *argv[])
15 {
16 SPAWN(consumer, SYNC(res));
17 SPAWN(producer, SLOT_ADR(res));
18 }
19

Figure 6.4: Thread Synchronization

thread creation time represents a dependence that will be satisfied at runtime. The pro-

grammer declares amissing argument by simply using theSYNC keyword instead of the

argument in theSPAWN call. TheSYNCmacro accepts an optional parameter. The param-

eter, enclosed in parenthesis, is a keyword used to uniquelyidentify eachSYNC macro.

After a missing argument is defined, it can referenced with the macroSLOT ADR. The

compiler pairsSLOT ADR with SYNC macros to determine the position of themissing

argument within the thread argument list. Based on the argument’s position, the compiler

computes the offset of themissing argument slot within the thread handle, and therefore

the address of the synchronization slot needed by subsequent thread synchronization op-

erations. When a thread is spawned, the global counter is initialized with the number of

missing arguments. At runtime, as synchronization among threads occurs, the counter is

decreased by one unit every time the value of an argument is produced. Once the counter

reaches zero, meaning that all the dependencies have been satisfied, the thread is eligible

for execution.

The simple program shown in Figure 6.4 demonstrates how to use theSYNC op-

erator to define a dependency and synchronization between two threads.

Line 16: The program spawns the consumer thread. However, no argument is passed

52



to theSPAWN command. InsteadSYNC(res) indicates the argument is missing,
and it is expected to be provided at runtime. Note thatres is not a variable, but
an identifier that the compiler needs to matchSLOT ADR andSYNC commands, as
explained below.

Line 17: The program spawns the producer thread. Note there is not an argument either
but the keywordSLOT ADR(res). SLOT ADR is a built-in MAGMA compiler
command. The compiler pairsSLOT ADR andSYNC macros. When the identifiers
match, the compiler replacesSLOT ADR with the actual address of the synchro-
nization slot corresponding to the missing argument. In ourexample, the address
of result’s synchronization slot of the consumer.

Line 3: The keywordSYNC SLOT precedes the input argument. The purpose of this key-
word is to indicate that the argument is a pointer to a synchronization slot, expected
to be filled in with an integer number.

Line 6: Synchronization occurs between producer and consumer threads. The function
DATA SYNC sends the scalar valueresult to the consumer synchronization slot.
Once the value is stored in the synchronization slot, the global counter is decreased.
Since only one argument was missing, the counter becomes zero, and the runtime
system schedules the consumer for execution.

Suppose that in order to solve a problem, it has to be decomposed into a relatively

large but fixed number of subproblems, let us sayN . Let us further suppose that the

results from all these subproblems must be combined and processed all together to de-

termine the final answer. Initially, the declaration of the consumer thread function would

have to haveN parameters, one for each value to be produced. Declaring functions with

a large number of input arguments is not only cumbersome, butalso prone to errors.

To improve programmability, MAGMA supports indexed synchronization slots that are

defined using the notation “<* ... *>”. The notation attached to a parameter in a

function declaration tells the compiler that the function has multiple parameters.1 The

same notation attached to a function argument tells the compiler that multiple arguments

1 The difference between multiple arguments and variable argument lists is that with
multiple arguments, the number of arguments cannot change from one thread invoca-
tion to another. The MAGMA compiler may translate multiple arguments to variable
argument lists. However, that is an implementation detail.
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1 #include <magma.h>
2 #define N (NUM_PES)
3
4 void producer(SYNC_SLOT int sync_result)
5 {
6 int result = produce();
7 DATA_SYNC(result, sync_result);
8 }
9

10 void consumer(int result <*N*>)
11 {
12 int i;
13 for (i=0; i<N; i++) {
14 consume(result[i]);
15 }
16 }
17
18 void main(int argc, char *argv[])
19 {
20 int i;
21 SPAWN(consumer, SYNC(res<*N*>));
22 for (i=0; i<N; i++) {
23 SPAWN(producer, SLOT_ADR(res<* i *>));
24 }
25 }

Figure 6.5: Thread Synchronization with Indexed Slots

are missing. Finally, the user can also refer to each of the individual synchronization slots

with the built-in commandSLOT ADR. In this case “<* ... *>” encloses a variable or

constant that specifies the actual synchronization slot.

Figure 6.5 shows another version of theProducer-Consumer program. In this

example there are multiple producers and a single consumer synchronized through in-

dexed synchronization slots. The following explains the use of indexed synchronization

slots in this example:

Line 10: Defines indexed synchronization slots. It declares the consumer thread withN
parameters.

Line 21: The program spawns the consumer thread. All the arguments expected by the
consumer are declared as missing.

Line 22: Themain function spawnsN producers.

Line 23: Each producer receives a pointer to a synchronization slot.The compiler com-
putes the offset to each particular synchronization slot using the indexi.
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Line 7: The synchronization operation does not change to handle indexed synchroniza-
tion slots. After all, the producer gets a pointer to only onesynchronization slot.

6.1.3 Data Percolation

The previous examples demonstrated how threads use synchronization to pass

simple data. MAGMA allows parallel applications to exchange blocks of data as well.

MAGMA provides an explicitBLK SYNC operation to move contiguous blocks of arbi-

trary size. Similarly,GATHER BLOCK SYNC moves blocks of data of arbitrary size but

the data need not be located in a contiguous block. This operation is described in detail

in Section 6.2.2. Since this section only covers the basic features, we will focus on the

BLK SYNC operation. Even though it is a reduced version ofGATHER BLOCK SYNC,

BLK SYNC is more commonly used.

Threads cannot run until they arelogically enabled. In other words, threads cannot

start execution until all the data dependencies have been met. Because threads run to

completion, scheduling a thread while arguments are missing will just cause the thread to

stall at some point in the middle of the computation.

The DATA SYNC operation copies a scalar value to the target synchronization

slot. When the destination thread receives the synchronization signal, the scalar value

is alreadylocal and the thread can be executed without experiencing any longdelay.

However, when a thread accesses a block of data, i.e., the thread parameter refers to an

array, it may not be wise to fire the thread that is onlylogically enabled. If the block

of data is in off-chip memory, the thread will experience continuous delays due to the

higher latency of this memory. In a distributed memory system, a thread may not be able

to directly access the data located in a different node. Therefore, the programmer needs

to be cautious withlogically enabled threads. Instead of simply providing the pointer to

remote memory where the data block is, whichlogically enables the thread for execution,

it would be better to first migrate the data closer to the processing element and then
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provide the pointer to local memory. In MAGMA, after this process takes place, we say

that the thread isphysically enabled.

BLK SYNC is the operation that handles data block dependencies, and ensures

that a thread is not fired until it becomesphysically enabled. BLK SYNC takes three

arguments: the source memory area, the number of bytes to transfer, and a pointer to

the target synchronization slot. Note that it does not have atarget memory area. To

guarantee that the block of data is local,BLK SYNC first allocates memory in the level of

the memory hierarchy considered to belocal to the processing element. After memory

is allocated, the data block is transferred, for instance from off-chip to on-chip memory.

Then the target synchronization slot is synced, and so the function argument is filled with

a pointer to the temporary buffer. At that moment, the threadis not onlylogically enabled,

but it is alsophysically enabled, and now is ready for execution.

Figure 6.6 shows an implementation of thedaxpy routine that computes a linear

combination of two vectors, i.e., a constant alpha times a vector plus another vector (yi =

α×xi+yi). It is a simplified version in the sense that it does not have the integer arguments

incx andincy for the increment between elements of vectorsx andy, respectively. The

code is a straightforward implementation using the iterative programming paradigm to

demonstrate howBLK SYNC works.

In this example, we assume that the user can take advantage ofthe regularity of the

loop structure and the data access pattern and uniformly distribute the computation among

processing elements. In order to simplify the example and without loss of generality,

we also assume that the length of the vectors is a multiple of the number of processing

elements. The main aspects of thedaxpy implementation according to the MAGMA

model can be summarized as follows:

Line 24: Given our assumption that the vector length is a multiple of the number of
processing elements, we evenly divide the computation intochunks.

Lines 26–31: The main loop of thedaxpy routine spawns twice as many threads as there
are processing elements. Thedaxpy fn threads each do part of the computation,
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1 #include <magma.h>
2
3 daxpy_fn(int n, double alpha, double x[], double y[],
4 SYNC_SLOT double * done)
5 {
6 int i;
7
8 for (i=0; i<n; i++) {
9 y[i] = alpha * x[i] + y[i];

10 }
11 RELEASE(x);
12 DATA_SYNC(y, done);
13 }
14
15 scatter_fn(int n, double y_rem[], double y_loc[])
16 {
17 memcpy(y_rem, y_loc, n*sizeof(double));
18 RELEASE(y_loc);
19 }
20
21 daxpy(int n, double alpha, double x[], double y[])
22 {
23 int i;
24 int chunk_len = n/NUM_PES;
25
26 for(i=0; i<NUM_PES; i++) {
27 SPAWN(scatter_fn, chunk_len, &y[i*chunk_len], SYNC(y_local));
28 SPAWN(daxpy_fn, chunk_len, alpha, SYNC(x), SYNC(y), SLOT_ADR(y_local));
29 BLK_SYNC(&x[i*chunk_len], chunk_len*sizeof(double), SLOT_ADR(x));
30 BLK_SYNC(&y[i*chunk_len], chunk_len*sizeof(double), SLOT_ADR(y));
31 }
32 }

Figure 6.6: MAGMA daxpy Program

whereas thescatter fn threads will copy they vector back to its original loca-
tion in memory. After adaxpy fn thread computes its assigned chunk of vectory,
ascatter fn thread can start transferring the resultingy chunk back. The depen-
dency between threadsdaxpy fn andscatter fn is communicated explicitly
to the compiler with the macrosSYNC(y local) andSLOT ADR(y local).
Note thaty local is neither a variable nor a constant. It is only an identifier that
the compiler uses to match theSLOT ADR in line 28 with theSYNC in line 27.

Line 28: Thedaxpy fn function expects vectorsx andy of lengthn. However, these
arguments are defined as missing with theSYNC macro.

Lines 29–30: Thedaxpy routine knows the address of vectorsx andy when it spawns
thedaxpy fn threads. However, these vectors are probably not in local memory.
In order tophysically enable thedaxpy fn threads, thedaxpy routine invokes
two BLK SYNC operations to transfer chunks of vectorsx andy from their current
location (probably in remote memory) to a level of the memoryhierarchy local to
the processing element. Triggered by aBLK SYNC operation, the system allocates
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some temporary storage, and once the block of data has been transferred, it will
synchronize the corresponding slot of adaxpy fn thread.

Lines 8–9: Once chunks ofx andy are local todaxpy fn, i.e., the thread isphysically
enabled, it performs the normaldaxpy computation.

Line 11: Releases the temporary storage that holds the local copy of vectorx. The chunk
was allocated by the system as the result of aBLK SYNC operation.

Line 12: Sends a synchronization signal to threadscatter fn. This thread is waiting
since it was spawned in line 27, for a pointer to the local buffer where the resultingy
vector is stored. Note thatscatter fn is fired after it has beenlogically enabled
since the purpose of this thread is precisely to scatter databack to remote memory.

Line 17: The scatter fn thread copies the results (chunk of vectory) from local
memory to its original location.

Line 18: Releases the local copy of vectory.

6.2 MAGMA Program Execution Model

MAGMA refers to a multithreading model suitable for large scale multicore sys-

tems. MAGMA is based on a memory-adaptive model that incorporates the behavior

of the multi-level memory hierarchy found in modern multicore architectures. The run-

time system is responsible for data allocation and migration, ensuring that data islocally

available (to the processing element) before the computation starts.

The MAGMA Program Execution Model has the following important attributes:

• Programs are divided into small sequences of instructions,which we call threads.

• Threaded procedures or threads are defined like sequential functions, with an argu-

ment list just like that of a function.

• Upon thread creation, a small thread handle is allocated from the heap. But once a

thread starts execution, the local context is allocated from the runtime stack and the

thread handle is released.

• Threads are non-preemptive, i.e., once fired they run to completion.
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• There is a single-level hierarchy of threads.

• Data dependencies explicitly identified in the program determines the execution

order among threads.

• In order to satisfy the data dependencies identified in the application, the program

instructs the runtime system to percolate data from remote to local memory.

6.2.1 MAGMA Thread Model

The MAGMA thread model is based on event-driven (or signal-driven) non-

preemptive threaded procedures with dataflow-like synchronization as opposed to control

flow-driven asynchronous calls. A thread is said to belogically enabled when the prece-

dence conditions (data and control) are met. However, this condition is not sufficient.

In MAGMA, a thread is eligible to begin execution once it becomesphysically enabled.

This only happens when all the data referenced by the thread isphysically located inlocal

memory, wherelocal memory is determined by the user (programmer and compiler).

To make MAGMA suitable for large scale multicore systems, the model considers

a single level of threads, spawned like function calls. In sequential programs, a function

is called with a set of arguments specified at the function call site. Similarly, in MAGMA,

a thread can only start running when all the arguments have been produced. A thread

may have function-like arguments that are also specified when the thread is created. But

a thread may also have arguments that are not specified at thatpoint. These arguments

are expressed as explicit dependencies in the program. The dependencies are to be met at

runtime for a thread to start execution.

More importantly, date dependencies usually refer to data residing in remote

memory, and needing to be brought to local memory, before computation can start. In

MAGMA, the user (e.g. programmer and compiler) guides the runtime system to allocate

and gather data before an operation can be performed, and to scatter data back once the

work is done. Additionally, the compiler generates code assuming the data will be placed
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in a local region of memory. Once the data is transferred tolocal memory, and if all

the dependencies are satisfied, the runtime system activates the thread for execution. But

before a thread starts running, the runtime system fixes the thread’s argument so that it

points to the temporary storage.

In MAGMA, threads are uniquely addressable units referenced by a thread han-

dle. The thread handle is allocated from the heap. But once a thread starts running, it

allocates its own local context from the runtime stack and releases the thread handle. The

runtime stack is initialized when the thread is fired and released once the thread completes

execution. Therefore, a thread has no previous state when itstarts running. In addition,

threads do not share data via a frame in (remote) shared memory. Instead, all the data

a thread needs is to be passed as arguments. This solution inherently exploits on-chip

memory bandwidth (an abundant resource especially in many-core architectures) rather

than relying on off-chip memory (a scarce resource in multicore architectures).

As shown in theHello World program in Figure 6.1, multiple instances of the

same thread can be created by passing the same function name to multipleSPAWN com-

mands. However, each thread is only fired once and it terminates after execution com-

pletes. On the other hand, because threads are uniquely addressable units that do not share

data via a frame, the model guarantees that multiple instances of a thread can be executed

concurrently with no side-effects or data race conditions.

In addition, MAGMA programs, which strictly obey the threadfiring rules, are

deadlock-free. The dataflow computational model is known tobe deadlock-free as long

as the program is “well-structured”. The MAGMA Program Execution Model is based on

the same operational semantics of dataflow firing rules. Additionally, MAGMA threads,

which can be regarded as macro dataflow nodes, cannot deadlock. This is because by defi-

nition, all the data a thread requires is available for the thread to start execution. Therefore,

it can be proved that “well-structured” MAGMA programs are also deadlock-free.
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6.2.2 MAGMA Operations

This section describes the operations supported by the MAGMA Program Execu-

tion Model. These can be implemented in hardware, software,or a combination of both,

depending on the multicore architecture at hand.

• SPAWN: Initializes the descriptor of a new MAGMA thread and provides the thread

arguments. It also specifies the arguments that are missing (data dependencies),

which are to be resolved at run time.

SPAWN(function name, ...)

When a program callsSPAWN, the MAGMA runtime system allocates a handle for

a new MAGMA thread. The virtual thread is bound to the given function. The

runtime system fills in the available arguments and leaves those that are missing

empty. To specify a missing argument, the user precedes a unique identifier (an

undeclared variable) with theSYNC keyword. The runtime system also initializes a

counter with the total number of missing arguments.

If the thread descriptor does not have missing arguments, the thread is immediately

activated for execution. Otherwise, it remainsdormant until values for the missing

arguments are produced. Missing arguments are filled in withvalues produced by

subsequent calls to the MAGMA runtime system. Precisely, such missing argu-

ments represent the long latency operations that the runtime system will try to hide

using percolation.

The programmer may use the keywordSLOT ADR to refer to the missing argument

of anotherSPAWN function. Both theSYNC andSLOT ADR keywords require a

unique identifier. The compiler uses the identifier to pairSYNC andSLOT ADR

macros, and to generate the correct synchronization slot address.

• DATA SYNC: Sends a value to fill in a missing argument.

DATA SYNC(datum, SLOT ADR)
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If a data dependency refers to a single datum (i.e. a single value as opposed to a

complex data structure such as an array),DATA SYNC provides the value for the

missing argument to adormant thread. Once the value is copied to the MAGMA

thread descriptor, the runtime system updates the dependencies counter. When the

counter reaches zero, meaning that all data dependencies have been satisfied and

values for all arguments have been produced, the runtime system schedules the

thread for execution.

Based on the list of missing arguments in a previousSPAWN operation, the

MAGMA compiler automatically fills in theSLOT ADR argument ofDATA SYNC.

• BLK SYNC: The runtime system begins to percolate a contiguous block of data of

arbitrary size that a complex data structure requires.

BLK SYNC(void * src, size t length, SLOT ADR)

The MAGMA runtime system automatically allocates a buffer from local memory

to store the data to be percolated. Then the runtime system starts to percolatelength

bytes of data fromsrc to the internal buffer. Once the data is transferred to the

temporary buffer, the missing argument is filled in with the address of the temporary

buffer. Then the runtime system decrements the dependencies counter, and if it

becomes zero, the runtime system activates the thread for execution.

The MAGMA compiler automatically generates theSLOT ADR argument for

BLK SYNC calls based on the list of missing arguments passed to aSPAWN func-

tion.

• GATHER BLK SYNC: The runtime system percolates a non-contiguous block of

data of arbitrary size.

GATHER BLK SYNC(function name, function arg,

void * src, size t length, SLOT ADR)
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The MAGMA runtime system automatically allocates a buffer from local memory

to store the data to be percolated. Then the runtime system calls the user-provided

function to percolatelength bytes of data fromsrc to the internal buffer. The run-

time system passes this function the argument also providedby the user. Once the

data is transferred to the temporary buffer, the runtime system fills in the miss-

ing argument with the address of the temporary buffer. Then the runtime system

decreases the dependencies counter, and if it becomes zero,the runtime system

activates the thread for execution.

The MAGMA compiler automatically generates theSLOT ADR argument for

GATHER BLK SYNC calls based on the list of missing arguments passed to the

SPAWN command.

• ALLOC SYNC: The runtime system allocates a buffer from local memory that is to

be used by a MAGMA thread.

ALLOC SYNC(size t length, SLOT ADR)

The MAGMA runtime system allocates a buffer from local memory to store some

intermediate data needed by a MAGMA thread. Once the buffer is allocated, the

runtime system fills in the value of the missing argument and checks whether all

the data dependencies are met. When they are, the runtime system schedules the

thread for execution.

The compiler fills in theSLOT ADR argument forALLOC SYNC calls based on the

list of missing arguments of theSPAWN function.

• RELEASE: The runtime system releases internal storage allocated byprevious func-

tion calls.

RELEASE(void * ptr)

Local memory previously allocated with a call toALLOC SYNC, BLK SYNC, or

GATHER BLK SYNC is returned to the runtime system. The runtime system may
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keep the information used for bookkeeping of this memory buffer and may decide

to reuse the data in the future. However, the programmer should not rely on this

feature to continue accessing the data after the buffer has been released.

6.3 Main Features of MAGMA

In MAGMA, threads are like macro dataflow nodes. They containa sequence of

instructions that are executed in a von Neumann fashion, while thread activation follows

the dataflow style. Thread activation (or synchronization)is decoupled from the execution

stage. The former takes place in memory (mainly local memory) by writing tokens into

the synchronization slots of a thread handle. Execution is performed by the hardware

processing elements once a thread is fired. Firing and execution stages are connected

with a queue. This queue, which the the runtime system scheduler manages as a FIFO,

holds the threads that once activated are waiting for a processing element on which to run.

Threads are declared like sequential functions with a function argument list. How-

ever, a thread can be spawned without providing values for all its arguments. When argu-

ments aremissing, the thread remains inactive until all the data dependencies have been

resolved, i.e., values for all the arguments have been produced. If the argument is a scalar

variable, the value is directly copied into the argument slot. When the argument refer-

ences a block of data, the system first transfers the data to local memory, then it writes

the address of the internal storage in the argument slot.

As soon as the arguments are available, the thread is ready tobe executed. When

a thread is fired, the runtime system reads the arguments fromthe thread handle and sets

both the thread registers and runtime stack according to thesystem ABI. Then the thread

handle is released and recycled. A thread runs to completionwithout incurring any long

latency operations. That is because all the data the thread accesses has been previously

percolated and islocally available. Note that unlike pre-fetching, percolation allows to

gather and scatter data blocks across the different levels of the memory hierarchy, even

before the procedure or function that requires the data starts execution.
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The remainder of this section illustrates the main featuresof MAGMA through

program examples. We use three familiar programs (Fibonacci, N-Queens anddaxpy)

to illustrate the comparison between MAGMA, EARTH, and Cilkmodels. All the pro-

grams according to the EARTH model presented in this sectionare implemented using

the Threaded-C language release 2.0 [57], and the Cilk examples are coded based on the

Cilk 5.4.6 release [30].

In particular, it is worth noting that MAGMA gives the user the flexibility to solve

a problem using either recursion or iteration. Thread synchronization (or token matching)

is straightforward once the address of the target argument slot is known. Although the

address is based on the thread handle, and that is only known at runtime, the compiler

calculates the argument slot’s offset based on the locationof the missing argument within

the function argument list statically. As a result, threadsand synchronization slots are

uniquely identified at runtime. This feature supports both programming paradigms with

ease. Additionally, MAGMA percolates data from remote to local memory, allowing

threads to run to completion without experiencing long delays. In addition to hiding

latency, percolation improves data locality, and in some cases, facilitates data reuse, as

we demonstrate in Section 6.3.2.

We useFibonacci as an example of a recursive program that involves little com-

putation to illustrate operations such as thread creation and synchronization. The solution

to the enumeration of theN-Queens is also recursive. However, it involves movement

of data blocks and therefore, demonstrates how MAGMA percolates data. The third ex-

ample presents thedaxpy routine. Interestingly, the Cilk implementation uses recursion,

whereas MAGMA and EARTH programs use iteration.

6.3.1 Fibonacci Example

Figure 6.7 shows an example of a recursive sequential C code to calculateFi-

bonacci numbers. The code is a naive implementation of the mathematical equation for
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1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int fib(int n)
5 {
6 if (n<2) return (n);
7 else {
8 int x, y;
9 x = fib (n-1);

10 y = fib (n-2);
11 return (x+y);
12 }
13 }
14
15 int main(int argc, char *argv[])
16 {
17 int n, result;
18 n = atoi(argv[1]);
19 result = fib (n);
20 printf ("Result: %d\n", result);
21 return 0;
22 }

Figure 6.7: SequentialFibonacci Program

Fibonacci numbers. However, it serves the purpose of showing the differences and sim-

ilarities among the three program execution models. Figures 6.9, 6.10, and 6.11 show

three programs that computeFibonacci numbers according to MAGMA, EARTH and

Cilk models, respectively.

Since we take the mathematical equation forFibonacci numbers, and use a recur-

sive approach to write the parallel programs, in the three parallel versions there is afib

function that is called recursively. Iffib(n) determines it is not a leaf, it callsfib(n − 1)

andfib(n − 2), and adds the results.

Sequential C and Cilk programs are very similar. In fact, theonly differences be-

tween them, besides the inclusion of the library header filecilk.h, are a few keywords:

cilk, spawn, andsync. When a Cilk program runs on one processor, it has the same

semantics as the C program that results from deleting the Cilk keywords. This is called C

elision of the Cilk program.

Of the threeFibonacci parallel programs, the Cilk version is the easiest to un-

derstand.fib is a compact function that resembles the sequential versionwith almost
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transparent synchronization among threads. On the other hand, MAGMA has two distinct

functions:fib andsum. fib(n) spawns the threadsum and then directs the recursion un-

til a leaf is reached.sum collects the results fromfib(n − 1) andfib(n − 2), adds them

together and passes the result to thesum thread spawned byfib(n)’s parent. Figure 6.8

shows the call graph forfib(4). Note that all instances offib spawn an instance ofsum,

exceptfib(1) andfib(0). In this case, thefib thread sends the result directly to the

sum thread spawned byfib(2). The EARTH model does not have two explicit functions.

However, the threaded procedure contains two fibers. These fibers are the counterparts

to thefib andsum threads in the MAGMA program. Additionally, the Threaded-Cpre-

compiler translates fibers into functions, although that isan implementation detail.

In Cilk and MAGMA, communication and synchronization are indistinguishable.

EARTH is more flexible because data communication and synchronization signals are

handled separately. In EARTH, the data is first written to memory. Then, a fiber is synced

using its synchronization slot.

Both Cilk and EARTH programs declare two local variables to receive the results

from fib(n − 1) and fib(n − 2). On EARTH, these variables are allocated from the

frame that all fibers within a threaded procedure share. The requirement for a this frame

prevents EARTH from exploiting the memory closest to the processing elements, because

this memory usually is not uniformly accessible. On the other hand, the Cilk compiler

actually breaks the function into two threads, each with itsown stack similar to MAGMA

threads. MAGMA does not need such variables, since the results are passed directly to

the sum thread. The compiler computes the synchronization slot address directly from

the information that the macrosSY NC andSLOT ADR provide, such as the unique

identifier.

The following explains the details of the MAGMA program shown in Figure 6.9

to computeFibonacci numbers and the commands introduced in this example:

Line 5: The arguments tofib include aSYNC SLOT to be synced after the result is
computed. The synchronization signal is implicit with the function result.
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Figure 6.8: MAGMA Fibonacci Call Graph

Lines 7–8: This function call is a leaf (no more recursion). It passes the valuen directly
to the SYNC SLOT result. The threaded proceduresum that the parent thread
spawned receives this value as eitherx or y.

Lines 10–13: This function call requires recursion. It spawns the threadthat will receive
the results, and recursively calls thefib function twice. One function’s result is
directed toleft (sum function argumentx), and the other is directed toright
(sum function argumenty). The compiler pairs eachSLOT ADR with a SYNC
macro based on matching identifiers, and generates the address of each synchro-
nization slot so that the instances offib have places to send their results. Note that
each call receives a slot address to eitherleft or right, and that thesum thread
requires two values (Line 17) before it can start.

Lines 17–19: Threadsum runs after two values have been received inx andy because
both children (Lines 12–13) have sent back their result. Thethread addsx andy
together and use aDATA SYNC (on a remote slot) to send the sum to the caller’s
sum thread.
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1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <magma.h>
4
5 fib(SYNC_SLOT int result, int n)
6 {
7 if (n<2) {
8 DATA_SYNC(n, result);
9 }

10 else {
11 SPAWN(sum, result, SYNC(left), SYNC(right));
12 SPAWN(fib, SLOT_ADR(left), n-1);
13 SPAWN(fib, SLOT_ADR(right), n-2);
14 }
15 }
16
17 sum(SYNC_SLOT int result, int x, int y)
18 {
19 DATA_SYNC(x+y, result);
20 }
21
22 int main (int argc, char *argv[])
23 {
24 int n;
25 n = atoi(argv[1]);
26 SPAWN(done, SYNC(res), n);
27 SPAWN(fib, SLOT_ADR(res), n);
28 }
29
30 done(int result, int n)
31 {
32 printf ("fib(%d) = %d\n", n, result);
33 }

Figure 6.9: MAGMA Fibonacci Program

The aspects worth noting of the EARTH program shown in Figure6.10 to compute

Fibonacci numbers, are the following:

Line 4: The parameters to thefib threaded function include a global handle (result)
which will receive the result of the function (thenth Fibonacci number); they also
include a slot to be signaled when that result has been computed. In other words,
result is used for data communication whereasdone carries the synchronization
signal.

Line 6: Local variablesr1 andr2 are introduced to receive the results of the recursive
calls.

Lines 8–10: This function call is a leaf (no more recursion). It writes the values 0 and 1
into r1 andr2 and directly spawns fiberREADY.

Lines 11–13: This function call requires recursion. It calls thefib function twice, with
one result directed tor1 and the other directed tor2. The macroTO GLOBAL
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1 #include <stdio.h>
2 #include <stdlib.h>
3
4 THREADED fib( int n, int *GLOBAL result, SPTR done )
5 {
6 int r1, r2;
7
8 if (n <= 1) {
9 r1 = 0; r2 = 1;

10 SPAWN( READY );
11 } else {
12 TOKEN( fib, n-1, TO_GLOBAL(&r1), TO_SPTR(READY) );
13 TOKEN( fib, n-2, TO_GLOBAL(&r2), TO_SPTR(READY) );
14 }
15
16 FIBER READY <* 2 *> {
17 PUT_SYNC( r1 + r2, result, done );
18 TERMINATE;
19 }
20 }
21
22 THREADED MAIN( int argc, char* argv[] )
23 {
24 int n, res;
25
26 n = atoi(argv[1]);
27 TOKEN( fib, n, TO_GLOBAL(&res), TO_SPTR(FIB_DONE) );
28
29 FIBER FIB_DONE <* 1 *> {
30 printf( "fib(%d) = %d\n", n, res );
31 TERMINATE;
32 }
33 }

Figure 6.10: EARTH Fibonacci Program

converts the local addresses&r1 and&r2 into global handles so that the two in-
stances offib have places to send their results. Note that both calls receive the
same synchronization slot (TO SPTR(READY)), and that this fiber requires 2 syn-
chronization signals (Line 16) before it can start.

Lines 16–19: FiberREADY runs after two signals have been received in synchronization
slotREADY, indicating that both results are ready inr1 andr2 because both chil-
dren (Lines 12–13) have sent back their result. FiberREADY may also be spawned
directly (Line 10) if this invocation of the functionfib is a leaf of the recursion
tree. FiberREADY adds the sub-results together and uses aPUT SYNC (on a remote
slot) to send the sum to the caller.

The main aspects of the Cilk program shown in Figure 6.11 are as follows:
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1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <cilk.h>
4
5 cilk int fib(int n)
6 {
7 if (n<2) return n;
8 else {
9 int x, y;

10 x = spawn fib (n-1);
11 y = spawn fib (n-2);
12 sync;
13 return (x+y);
14 }
15 }
16
17 cilk int main(int argc, char *argv[])
18 {
19 int n, result;
20 n = atoi(argv[1]);
21 result = spawn fib(n);
22 sync;
23 printf ("Result: %d\n", result);
24 return 0;
25 }

Figure 6.11: Cilk Fibonacci Program

Lines 10–11: In Cilk, when the keywordspawn precedes a function, the procedure is
executed similarly to a C function call. However, executionof the parent can con-
tinue in parallel with the child, producing parallelism.

Line 12–13: The parent needs to executesync in order to safely use the values that
the child returns. This synchronization is like a local barrier. It only waits for the
children spawned by the procedure that executessync.

6.3.2 N-Queens Example

Figure 6.13 shows the core routine of a sequential program that solves theN-

Queens problem. The full source code is provided in Appendix A. TheN-Queens code

counts the number of ways to placeN queens on aN × N chess board so that none of

them can hit any other in one move under normal chess rules. Wechose a recursive im-

plementation, similar to the previousFibonacci example, but that requires block transfer

operations.

71



0

3

?

0

3

?

0

3

1

?

Figure 6.12: N-Queens Recursion

To solve theN-Queens problem a search function is called that tries placing queens

in different columns of a given row of the board. When the function finds a valid position,

it splits the search into two subproblems. One subproblem adds the new queen to the

chessboard and starts searching the next row. The other keeps trying positions to the

right of the current position. For the original search, the function returns the sum of the

solutions to both subproblems, see Figure 6.12.

The sequential C implementation is straightforward. For a row received as one of

the input arguments in line 1, the function tries to find a valid position for a queen in the

column range betweenstart col andn, line 6. If the search is successful the problem

is divided into two subproblems as explained above by makingrecursive function calls,

lines 9–10. Once the two searches complete, the function adds the solutions returned by

each of the subproblems, line 11.

Figures 6.15, 6.17, and 6.16 show the parallel version of theN-Queens solution

according to MAGMA, EARTH, and Cilk models, respectively. Due to the nature of the

problem, theN-Queens code is amenable to parallelization. In the three models, each

of the recursive function calls in the sequential program isexecuted on an independent

thread (or fiber depending on the model) so they can run concurrently.
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1 int sequeens(int n, int row, int start_col, int board[])
2 {
3 int col, sols_this_col, sols_other_cols;
4
5 if (row >= n) return 1;
6 for (col = start_col; col < n; col++) {
7 if (safe(board, row, col)) {
8 board[row] = col;
9 sols_this_col = sequeens(n, row+1, 0, board);

10 sols_other_cols = sequeens(n, row, col+1, board);
11 return (sols_this_col + sols_other_cols);
12 }
13 }
14 return 0;
15 }

Figure 6.13: SequentialN-Queens Program

The Cilk program is again simpler than the programs written according to the

EARTH and MAGMA models. However, this simplicity comes at a cost. At runtime,

each instance of thenqueens function stalls while it makes a copy of the current state

of the board. While data is transferred, no other thread can make use of the processing

element. On the contrary, MAGMA and EARTH models support split-phase memory

copy transactions. While the runtime system transfers the data, another thread or fiber

could run on the processing element, achieving better resource utilization.

Figure 6.14 shows the call graph for the MAGMAN-Queens program. Each in-

stance ofnqueens that is not a leaf spawns two new instances of the same function.

However, the new threads remaindormant until the status of the board is percolated. Note

that after the status of the board has been percolated from remote memory once, subse-

quent block transfers are from local memory. This example demonstrates how percolation

can improve memory bandwidth via data reuse.

The main features of theN-Queens routine (see Figure 6.15) implemented accord-

ing to the MAGMA model are as follows:

Line 8: After the search function finds a valid position for a queen, we spawn the thread
sum that will receive the results from each of the subproblems. If the main loop
in line 5 does not find a valid position for a queen, the search function returns 0
directly to its parent in line 27.
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Figure 6.14: MAGMA N-Queens Call Graph

Lines 9–10: When the search reaches the last row, it is complete, and the current solution
is reported as one solution to thesum thread.

Lines 12–14: Otherwise, we spawn a new thread to continue the search of thesubprob-
lem. We add the new queen to the board and start searching fromthe first column
of the next row.

Lines 16–17: When the search reaches the rightmost column of the board, itmeans that
a solution has not been found. At this point, the function tells thesum thread
spawned in line 8 that there is not a solution to the second subproblem.

Lines 19–21: Otherwise, we spawn another thread to continue trying positions to the
right of the current column.

Lines 26–27: When the search throughout a row is unsuccessful, this function tells the
sum thread spawned by its parent that the current subproblem didnot find any
solution.

Lines 33: After the threads spawned in lines 13 and 20 complete execution or when the
current function reaches an edge of the board, lines 10 and 17thesum thread adds
the number of solutions to both subproblems and communicates the result to the
sum thread spawned by its parent.

Lines 14 and 21: Before the thread spawned to compute one of the subproblems is fired,
the status of the current board must be transferred. In this case the user defines a
function (lines 36–39) and a single argument, that the runtime system invokes to
copy data from remote to local memory. We useGATHER BLK SYNC instead of
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1 nqueens(int n, int row, int start_col, int board[], SYNC_SLOT result)
2 {
3 int col;
4
5 for (col=start_col; col<n; col++) {
6 if (safe(board, row, col)) {
7 board[row] = col;
8 SPAWN(sum, result, SYNC(this_col), SYNC(other_cols));
9 if (row+1 == n) {

10 DATA_SYNC(1, SLOT_ADR(this_col));
11 }
12 else {
13 SPAWN(nqueens, n, row+1, 0, SYNC(board), SLOT_ADR(this_col));
14 GATHER_BLK_SYNC(gather, row, board, n*sizeof(int), SLOT_ADR(board));
15 }
16 if (col+1 == n) {
17 DATA_SYNC(0, SLOT_ADR(other_cols));
18 }
19 else {
20 SPAWN(nqueens, n, row, col+1, SYNC(board), SLOT_ADR(other_cols));
21 GATHER_BLK_SYNC(gather, row, board, n*sizeof(int), SLOT_ADR(board));
22 }
23 break;
24 }
25 }
26 if (col == n) {
27 DATA_SYNC(0, result);
28 }
29 }
30
31 sum(SYNC_SLOT int result, int sols_this_col, int sols_other_cols)
32 {
33 DATA_SYNC(sols_this_col+sols_other_cols, result);
34 }
35
36 gather(void *dst, void *src, int n, void *arg)
37 {
38 memcpy(dst, src, (int)arg);
39 }

Figure 6.15: MAGMA N-Queens Program

BLK SYNC because the amount of data to move and the size of the buffer that needs
to be allocated are different. We allocaten×sizeof(int) bytes but we only transfer
row × sizeof(int) bytes.

The implementation according to the EARTH and MAGMA models are similar

because the semantics of the operations are the same. In thiscase, the differences are that

in the EARTH program (see figure 6.17), a fiber collects the results from the subproblems

instead of a threaded procedure. Additionally, the first fiber of the threaded procedure

copies the board from the parent’s thread in line 10. Once thetransfer completes, the
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1 cilk int nqueens(int n, int row, int start_col, int *previous)
2 {
3 int own_board[MAX_BOARD_SIZE], col, sols_this_col, sols_other_cols;
4
5 sols_this_col = sols_other_cols = 0;
6 memcpy(own_board, previous, row*sizeof(int));
7
8 if (row >= n) return 1;
9 for (col=start_col; col<n; col++) {

10 if (safe(own_board, row, col)) {
11 own_board[row] = col;
12 sols_this_col = spawn nqueens(n, row+1, 0, own_board);
13 sols_other_cols = spawn nqueens(n, row, col+1, own_board);
14 sync;
15 return (sols_this_col + sols_other_cols);
16 }
17 }
18 return 0;
19 }

Figure 6.16: Cilk N-Queens Program

DATA RECEIVED fiber does the actual search in lines 12–37. Because in EARTH,the

user is responsible for all the memory management, the current implementation declares

an array in the frame of the threaded procedure. However, theprogram could dynamically

allocate theown board array elsewhere.

Like the implementation of the recursiveFibonacci program,N-Queens sequential

C and Cilk programs are very similar. However, besides the inclusion of the library

header file and the Cilk keywords, the Cilk program makes a call to memcpy in line 6, to

copy the status of the board. Note that the Cilk program can only run on SMP systems,

precisely because thememcpy call. In this case, the simplicity of the Cilk model and the

C elision property comes at the expense of portability. The operational semantics of the

Cilk program can be summarized as follows:

Lines 12–13: Generates parallelism when thenqueens functions are executed in a sep-
arate thread and run concurrently with the parent. That is because the function is
preceded by the keywordspawn.

Line 14–15: The parent needs to executesync in order to safely use the values that the
children returned.
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1 THREADED nqueens(int n, int row, int start_col,
2 int *GLOBAL previous, int *GLOBAL result, SPTR done)
3 {
4 int own_board[MAX_BOARD_SIZE],
5 col,
6 sols_this_col, sssols_other_cols;
7
8 sols_this_col = 0;
9 sols_other_cols = 0;

10 BLKMOV_SYNC(previous, TO_GLOBAL(own_board), row*sizeof(int), DATA_RECEIVED);
11
12 FIBER DATA_RECEIVED <* 1 *> {
13 for(col=start_col; col<n; col++) {
14 if (safe(own_board, row, col)) {
15 own_board[row] = col;
16 if (row+1 == n) {
17 sols_this_col = 1;
18 SYNC(DONE);
19 }
20 else {
21 TOKEN(nqueens, n, row+1, 0, TO_GLOBAL(own_board),
22 TO_GLOBAL(&sols_this_col), TO_SPTR(DONE));
23 }
24 if (col+1 == n) {
25 SYNC(DONE);
26 }
27 else {
28 TOKEN(nqueens, n, row, col+1, TO_GLOBAL(own_board),
29 TO_GLOBAL(&sols_other_cols), TO_SPTR(DONE));
30 }
31 break;
32 }
33 }
34 if (col == n) {
35 SPAWN(DONE);
36 }
37 }
38
39 FIBER DONE <* 2 *> {
40 PUT_SYNC(sols_this_col + sols_other_cols, result, done);
41 TERMINATE;
42 }
43 }

Figure 6.17: EARTH N-Queens Program
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1 void daxpy(int n, double alpha, double x[], double y[])
2 {
3 int i;
4
5 for (i=0; i<n; i++) {
6 y[i] = alpha * x[i] + y[i];
7 }
8 }

Figure 6.18: Sequentialdaxpy Program

6.3.3 daxpy Example

Figure 6.18 shows an example of a sequentialdaxpy routine. The C code computes

a constant alpha times a vector plus another vector (yi = α × xi + yi). It is a simplified

version in the sense that it assumes that the increments between vectorsx andy are equal

to one. In other words, the routine does not have the integer argumentsincx and incy

for the increment between vectorsx andy, respectively. Figures 6.19, 6.20, and 6.21

show the parallel version of thedaxpy routine according to MAGMA, EARTH, and Cilk

models, respectively.

The sequential C implementation is straightforward using afor loop. In lines 5–6,

the routine iterates over the vectorsx andy of lengthn, adding a scalar multiple of a

double precision vector element to another double precision vector element. The result

overwrites the initial values of vectory.

For the MAGMA and EARTH implementations, we assume that the user can take

advantage of the regularity of the loop structure and the data access pattern in order to

uniformly distribute the computation among threads (or fibers depending on the model).

In order to simplify the example and without loss of generality, we also assume that the

length of the vectors is a multiple of the number of threads (or fibers). Quite differently,

the Cilk program recursively divides the computation of ann-size daxpy problem into

2k subproblems.k is determined by the initial problem size,n, and a predefined thresh-

old, BLK SIZE. In the three models, the programmer is responsible for determining the

optimal block size.
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The Cilk program requires fewer number of lines of codes thando the other two.

Even though the Cilk program without the Cilk keywords is still a valid C program, this

time it is not like the sequential C version. The sequentialdaxpy routine is a single loop

whereas the Cilk program uses recursion. At each step, the Cilk program divides vectors

x andy into two halves. To keep track of the vectors’ boundaries, the program requires

an additional function argument (offset). Then the program spawns two threads that

perform thedaxpy operation on each half of the vectorsx andy.

The implementations according to the MAGMA and EARTH modelsare some-

what more complicated, mainly because the vector chunks aretransferred from a “re-

mote” to a “near” location. The Cilk program is simpler but atruntime, there may be

significant execution delays if the accesses are to remote memory. The EARTH model

ensures that the “near” location is on the same node, although it could be in off-chip

memory. MAGMA goes one step further and guarantees that the “near” location is in-

deed local memory. In addition, the MAGMA program is simplerthan the EARTH code

because some of the memory management is handled directly bythe runtime system. For

instance, the MAGMA program does not do any memory allocation. The runtime system

internally allocates temporary storage for vectorsx andy blocks, which are released by

the program once the partial results are obtained. The EARTHprogram on the contrary,

handles all memory manually. Note that the EARTH program shown in Figure 6.20 corre-

sponds to an unoptimized implementation with a naive buffermanagement.2 On the other

hand, the Cilk program does not involve any data transfer, thus its simplicity. However,

on a cache-less system, such as Cyclops-64, the program would have to explicitly handle

all buffer allocation and data transfers to exploit locality. It is very likely that the resulting

Cilk program will be as complex as the EARTH program. It is also worth noting that the

2 In order to simplify synchronization among fibers, the EARTHdaxpy routine has
not been optimized with double buffers or alike. As a consequence, the execution
appears to be pipelined but it actually runs sequentially.
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1 #include <magma.h>
2
3 daxpy_fn(int n, double alpha, double x[], double y[],
4 SYNC_SLOT double * done)
5 {
6 int i;
7
8 for (i=0; i<n; i++) {
9 y[i] = alpha * x[i] + y[i];

10 }
11 RELEASE(x);
12 DATA_SYNC(y, done);
13 }
14
15 scatter_fn(int n, double y_rem[], double y_loc[])
16 {
17 memcpy(y_rem, y_loc, n*sizeof(double));
18 RELEASE(y_loc);
19 }
20
21 daxpy(int n, double alpha, double x[], double y[])
22 {
23 int i;
24 int chunk_len = n/NUM_PES;
25
26 for(i=0; i<NUM_PES; i++) {
27 SPAWN(scatter_fn, chunk_len, &y[i*chunk_len], SYNC(y_local));
28 SPAWN(daxpy_fn, chunk_len, alpha, SYNC(x), SYNC(y), SLOT_ADR(y_local));
29 BLK_SYNC(&x[i*chunk_len], chunk_len*sizeof(double), SLOT_ADR(x));
30 BLK_SYNC(&y[i*chunk_len], chunk_len*sizeof(double), SLOT_ADR(y));
31 }
32 }

Figure 6.19: MAGMA daxpy Program

elision property, which makes Cilk highly efficient for divide-and-conquer-programs, lim-

its the types of program paradigms that are supported and thetypes of machines where it

can run efficiently to shared-memory machines. From the discussion above, the MAGMA

model offers a reasonable trade-off between programmability and portable performance

for cache-less distributed memory systems.

The main features of thedaxpy routine (see Figure 6.19) implemented according

to the MAGMA model are as follows:

Line 24: Given our assumption that the vector length is a multiple of the number of pro-
cessing elements, we evenly divide the computation among processing elements.

Lines 26–31: The maindaxpy routine loop spawns twice as many threads as there
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are processing elements. Thedaxpy fn threads each do part of the computa-
tion, whereas thescatter fn threads will copy they vector back to its orig-
inal location in memory. After adaxpy fn thread computes its corresponding
chunk of vectory, a scatter fn thread can start transferring the resultingy
chunk back. The programmer explicitly tells the compiler the dependency be-
tween threadsdaxpy fn andscatter fn with the macrosSYNC(y local)
andSLOT ADR(y local). Note thaty local is neither a variable nor a con-
stant. It is only an identifier that the compiler uses to matchSLOT ADR andSYNC
macros in lines 27 and 28, respectively.

Line 28: Thedaxpy fn function expects vectorsx andy of lengthn. However, these
arguments are defined as missing with the keywordSYNC.

Lines 29–30: Thedaxpy routine knows the address of vectorsx andy when it spawns
thedaxpy fn thread. However, these vectors likely are not in local memory. In
order tophysically enable thedaxpy fn thread, thedaxpy routine invokes two
BLK SYNC operations to transfer vectors chunksx andy for its current location
(probably in remote memory) to a level of the memory hierarchy local to the pro-
cessing element. Triggered by aBLK SYNC operation, the system allocates some
temporary storage, and once the block of data has been transferred, it will synchro-
nize thedaxpy fn thread filling the appropriate argument slot with the address of
the temporary storage to which the chunk has been copied.

Lines 8–9: Once thedaxpy fn thread isphysically enabled, i.e., vectorsx andy chunks
are in local memory, it performs the normaldaxpy computation.

Line 11: After daxpy fn completes the computation, and the partial result is iny, the
thread releases the temporary storage that holds the local copy of vectorx. The
chunk was allocated by the system as the result of aBLK SYNC operation.

Line 12: Sends a synchronization signal to threadscatter fn. This thread isdormant
since it was spawned in line 27, waiting for a pointer to the local buffer where the
partial result (y) is stored.

Line 17: The scatter fn thread copies the results (chunk of vectory) from local
memory to its original location.

Line 18: Releases the local copy of vectory.
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1 THREADED daxpy(int n, double alpha, double x[], double y[], SPTR * done)
2 {
3 int i;
4 int chunk_len = n/NUM_NODES;
5 double *lx, *ly;
6
7 lx = malloc(chunk_len*sizeof(double));
8 ly = malloc(chunk_len*sizeof(double));
9

10 for(i=0; i<NUM_NODES; i++) {
11 FIBER COPY <* 0, 1 *>:
12 BLKMOV_SYNC(TO_GLOBAL(x+i*chunk_vec), lx, chunk_len, TO_SPTR(DAXPY));
13 BLKMOV_SYNC(TO_GLOBAL(y+i*chunk_vec), ly, chunk_len, TO_SPTR(DAXPY));
14 }
15
16 FIBER DAXPY <* 2 *> {
17 for (i=0; i<n; i++) {
18 ly[i] = alpha * lx[i] + ly[i];
19 }
20 BLKMOV_SYNC(ly, TO_GLOBAL(y+i*chunk_vec), chunk_len, TO_SPR(COPY));
21 }
22
23 free(lx);
24 free(ly);
25 SYNC(done);
26 TERMINATE;
27 }

Figure 6.20: EARTH daxpy Program

The main features of thedaxpy routine (see Figure 6.20) implemented according

to the EARTH model are as follows:

Lines 7–8: The initial fiber, which runs automatically when the threaded procedure
daxpy is INVOKEd by the main program, starts with the allocation of a temporary
buffer for chunks of vectorsx andy.

Lines 10–11 : Iterations of the threaded procedure’s main loop terminate when the con-
trol flow reaches theFIBER keyword. After the first iteration is executed, however
the COPY fiber is executed because the fiber’s initial synchronization counter is
zero. Subsequent firing of instances of this fiber is controlled by the synchroniza-
tion signal sent by theDAXPY fiber in line 20.

Lines 12–13: FiberCOPY transfers two chunks of vectorsx andy from remote memory
into this node’s memory. Once the data is copied intolx andly the runtime system
will sync theDAXPY fiber twice, one for each chunk.

Line 16: OnceDAXPY’s synchronization slot counter reaches zero, the fiber is enabled
for execution. When the fiber starts running, it first computes the linear combination
lyi = α × lxi + lyi. Then it transfers the partial results inly to the location from
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1 #include <cilk.h>
2
3 cilk void daxpy(int n, int offset, double alpha,
4 double x[], double y[])
5 {
6 int i;
7 int n2;
8
9 if (n<BLK_SIZE) {

10 for (i=0; i<n; i++)
11 y[i+offset] = alpha * x[i+offset] + y[i+offset];
12 }
13 else {
14 n2 = n >> 1;
15 spawn daxpy(n2, offset, alpha, x, y);
16 spawn daxpy(n-n2, offset+n2, alpha, x, y);
17 }
18 }

Figure 6.21: Cilk daxpy Program

which the chunk was originally read, line 20. After the data has been scattered,
it is safe to reuse bufferslx andly for another iteration. OnceCOPY receives this
synchronization signal, it will transfer two new blocks of data from remote memory
and will continue through another iteration of the main loop. Again, once control
flow reaches the keyword FIBER the ongoing iteration terminates.

Lines 23–26: After the main loop completes all the iterations, executioncontinues in line
23. The threaded procedure releases the memory allocated for lx andly, synchro-
nizes the parent’s threaded procedure, and terminates execution.

As mentioned above, this implementation of thedaxpy routine according to the

EARTH model could be further optimized. The current implementation allocates a single

buffer and therefore cannot apply techniques such as double-buffering in order to hide

latency. As a result, execution is serialized,COPY, DAXPY, and the initial fiber execute

one iteration at a time. With double or triple buffering, interleaving of the stages would

be possible, thus hiding the communication latency betweenCOPY andDAXPY. How-

ever, the programmer would be responsible for all memory management. On MAGMA,

memory management is almost transparent.

The main characteristics of thedaxpy routine implemented in Figure 6.21 accord-

ing to the Cilk model are as follows:
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Lines 13–17: As long as the problem size is bigger than the predefined threshold
BLK SIZE, the Cilk routine continues applying recursion and decomposes ann-
size problem into twon/2-size subproblems.

Line 15: The program spawns a thread to compute the result for then/2-size subproblem
corresponding to vectorsx andy first halves.

Line 16: The program spawns a second thread to compute the result for the n/2-size
subproblem corresponding to vectorsx andy second halves.

Lines 9–12: Once thedaxpy(n) function determines that it is a leaf, it performs the
daxpy operation on the two input vectors using a loop. Because thedaxpy function
operates directly on thex andy vectors, it has to keep track of each chunk’s position
within the vector. The loop iteration uses this position (offset) to access the
correct section of the vectors.
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Chapter 7

EXPERIMENTAL RESULTS

In this chapter, we present the experimental results for TNTTVM. The main re-

sults of our experimental study can be summarized as follows:

• High efficiency: Our microbenchmarks demonstrate that TNT primitives for thread

creation and recycling complete in a few hundred cycles withlow overhead.

• Scalability: An increased workload (number of threads spawned by a microbench-

mark) and/or additional hardware resources (thread units)are easily handled by the

runtime system with negligible impact on the operations of the runtime system.

• Usability: Our experience with MAGMA demonstrates that the TNT user-level

library without kernel intervention (hence, no disruption), can effectively support a

multithreaded program execution model.

Experimental Platform

We conducted our experiments with the Cyclops-64 software toolset 2.4 release,

which includes the C64 GCC-4.1 compiler, the FAST simulatorand the C64 kernel. For

the purpose of these experiments, we replaced the default C64 kernel with the TNT library

and a small amount of code that bootstraps the new library.

7.1 TNT Results

To measure the overhead imposed by thread management operations, we wrote a

simple microbenchmark. The main function consists of a single loop to create a number
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1 #include <tnt.h>
2
3 #define NUM_THREADS 10000
4
5 void empty_fn(void)
6 {
7 return;
8 }
9

10 int main()
11 {
12 tnt_desc_t th_desc;
13 int64_t error = 0;
14
15 for (i=0; i<NUM_THREADS && !error; ++i) {
16 if (tnt_create(&th_desc, &empty_fn, NULL) != 0) {
17 error++;
18 }
19 }
20 }

Figure 7.1: TNT Empty Microbenchmark

of threads. After all the threads have been spawned, the program returns. The threads

spawned by the microbenchmark execute an empty function, see Figure 7.1. They return

almost instantaneously and they are immediately recycled by the runtime system. We

define “user time” as the elapsed time between the invocationof the main function and

its termination, which mainly accounts for the loop that creates all the threads. We also

measure the “system time”, defined as the wall time it takes tocomplete the execution of

the program. The system time accounts for the execution of the main function in addition

to all the work generated from it. Because the thread functions are empty, the difference

between the system and user times represents the overhead ofthe runtime system, i.e. the

time spent in the creation, termination, and recycling of threads.

For the purpose of this experiment, we modified the TNT library so that it only

allocates 1,000 thread descriptors, and these are allocated from the on-chip memory (ini-

tially TNT can allocate descriptors from off-chip memory too). Accordingly, the program

detects whether a thread could not be spawned, i.e. TNT failed to create another virtual

thread because all the thread descriptors were being used, and terminates.

Table 7.1 and Figure 7.2 summarize the system and user times measured by the
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Table 7.1: Empty Microbenchmark Execution Times [in Ten Thousand Clock Cycles]

VTs 1,000 10,000 100,000
HTs System User System User System User

1 183 63 183 63 183 63
2 103 63 228 158 228 158
3 104 87 887 870 8,717 8,700
4 104 86 884 867 8,687 8,670
8 104 86 884 867 8,687 8,670
16 104 86 884 867 8,687 8,670
32 104 86 884 867 8,687 8,670
64 104 86 884 867 8,687 8,670
128 104 86 885 867 8,688 8,670
160 104 86 885 867 8,688 8,670

microbenchmark that creates103, 104, and105 threads, on a platform with an increas-

ing number of hardware thread units. Because of the TNT library modifications de-

scribed above, when there is a single hardware thread unit, the program only spawns

1,000 threads, and when there are two hardware thread units,the program spawns 2,498

threads, instead of104 and105.

As expected, the benchmark’s execution time increases linearly with the number

of threads spawned by the program. A point worth noting is that with three or more thread

units, the system and user times remain constant. That meansthat a system with at least

three thread units is able to recycle threads as fast as they are created. How fast can TNT

spawn and recycle threads? From the user time in the last column, we determine that TNT

can spawn a thread in about 867 clock cycles. We define the recycle time as the elapsed

time from the moment a virtual thread returns until the thread unit starts execution of the

next virtual thread. That time is precisely the difference between the system and user

times when the microbenchmark runs on a single thread unit. From the values of the first

row in Table 7.1, we determine that the recycle time is less than 1,200 cycles. In light of

these numbers, the execution of the microbenchmark can be summarized as follows. The
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Figure 7.3: Thread Execution Interleaving

master thread executes a loop iteration every 867 cycles. Ina system with three thread

units, each of the two remaining thread units will be able to execute every other virtual

thread so by the time the master thread returns, the work willhave been almost completed,

see Figure 7.3.

When the hardware resources scale from 1 to 160 thread units,we notice that

the thread creation time increases from 630 to 867 cycles. This happens because when

there are not enough hardware thread units to pick up the workcreated by the master

thread, creating a new thread involves the initialization of a thread descriptor and pushing

the descriptor to the virtual ready queue. However, if thereare thread units, one will

be bound to the new thread and start its execution. This last step requires additional

processing (queue operations), thus the increased execution time.

In theEmpty microbenchmark, the main function creates a number of threads se-

quentially. Because threads execute an empty function, they return almost instantaneously

88



1 #include <tnt.h>
2
3 #define TREE_DEPTH 10
4
5 void tree_fn(int64_t *ptr_depth)
6 {
7 tnt_desc_t th_desc;
8 int64_t depth = (int64_t)ptr_depth;
9 int64_t error = 0;

10
11 if (depth > 1) {
12 if (tnt_create(&th_desc, &tree_fn, (void *)depth-1) ||
13 tnt_create(&th_desc, &tree_fn, (void *)depth-1)) {
14 error++;
15 }
16 }
17 }
18
19
20 int main(int argc, char *argv[])
21 {
22 int64_t depth = TREE_DEPTH;
23
24 tree_fn((void *)depth);
25 }

Figure 7.4: TNT Binary Tree Program

and they are immediately recycled by the runtime system. To measure the overhead im-

posed by thread management operations with a large number ofactive thread units, we

wrote a second microbenchmark. This program spawns threadsin a binary tree fashion.

The main function executes a procedure that spawns two threads and terminates. Each

thread then executes the same procedure so four additional threads are created. The pro-

cess continues until a specified depth is reached, at which point, the procedure returns

immediately, see Figure 7.4.

We define “work time” or “work” as the elapsed time between thetermination of

the main function and the completion of all the work generated by the program. Because

the main function only spawns two threads, it returns almostimmediately. Therefore, the

“user time” is meaningless. Similarly, the “system time” accounts for the initialization of

the system, which for small problem sizes, dominates the execution of the microbench-

mark. Thus, the “system time” is not meaningful either. For the tree microbenchmark the

“work time” is a better indicator of the overhead incurred bythe runtime system.
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Figure 7.5 shows the execution of the binary tree microbenchmark for depths be-

tween six and ten. As expected, the “work time” increases with the problem size (depth),

and for a given depth the “work time” decreases as we increasethe number of hardware

thread units. However, with more than eight thread units, the “work time” does not im-

prove any further, which seems to indicate the system is not scalable. On the contrary,

given the speed at which the program spawns threads, and the speed at which the runtime

system can recycle them, the “work time” does not improve with more than eight threads

because there is a bottleneck in the TNT library. In particular, there was a single queue

to manage all the virtual threads. This result means that TNTshould have 16 queues to

recycle threads in parallel. In conventional SMP machines,the runtime system usually

maintains one queue per processor to avoid this type of bottleneck. TNT does not require

as many, which demonstrates its efficiency. In TNT, any thread that returns to the runtime

system, executes the thread scheduler procedure describedin Section 5.2.3. Even though

the scheduler can be invoked by many threads in parallel, in the end all the threads access

the same queue of virtual threads, hence the initial lack of scalability. It is worth noticing

that even though the “work time” does not improve (beyond 8 thread units) it does not

worsen either. This result means that the system is able to maintain a constant throughput,

regardless of the load. Such a result confirms the efficiency of the runtime system.
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Chapter 8

CONCLUSIONS

This dissertation has presented TiNy Threads (TNT), a Program Execution Model

Aware Thread Virtual Machine (TVM) for the Cyclops-64 cellular supercomputer.

We believe that the Program Execution Model should be an integral part of a com-

puting system, especially on high-end computing systems, to avoid unnecessary interfer-

ence from the OS and subsequent performance degradation. For this reason, we propose

a system software methodology that ensures that critical capabilities such as fine-grain

multithreading and synchronization are exposed to the Program Execution Model via a

narrow interface. Given the features of the Cyclops-64 many-core architecture, we imple-

mented TNT as a user library that replaces the OS completely,yet provides direct access

to critical hardware resources.

We define the operational semantics of the MAGMA Program Execution Model,

and we complete an early implementation of MAGMA using TNT, demonstrating that

the Cyclops-64 TVM provides a sound model for the research and development of ad-

vanced Program Execution Models. MAGMA thread model is based on event-driven

non-preemptive threaded procedures with dataflow-like synchronization. MAGMA ex-

ploits locality using percolation to migrate data among different levels of the memory

hierarchy before the computation starts.
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8.1 Future Work

This dissertation has defined the TNT Thread Virtual Machineto support the de-

velopment of Program Execution Models on many-core architectures. One obvious con-

tinuation of the current work is to extend the TNT Thread Virtual Machine to a multi-

chip environment. There are some natural limitations restricting the maximum number

of chips that FAST can simulate. These limitations, rather than restrictions on the model

itself, prevented us from developing a multi-chip framework. Once C64 systems become

available in the upcoming Fall, these limitations will cease to be an issue.

Once MAGMA adopts the TNT multi-chip environment, we intendto extend the

percolation model so that the programmer has finer controls over local memory. The

destination address of a percolation operation involving two nodes could be either off-

chip or on-chip memory. In both cases the memory will be localto the processing element

residing on the target node.

In the Cyclops-64 architecture, ten thread units share a 32KB I-cache. To improve

I-cache utilization, TNT’s thread scheduler could be optimized to run threads with the

same thread activation pointer on thread units that share anI-cache.

Another area to continue working on is the MAGMA precompiler. Unlike EARTH

and Cilk, currently there is not a MAGMA precompiler. A precompiler would accept

MAGMA programs as described in Chapter 6 and would generate standard C code with

function calls to the MAGMA runtime system. Such a precompiler could be integrated

into the C64 toolchain to facilitate the development of MAGMA applications.
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Appendix

N-QUEENS SOURCE CODE

A.1 Sequential

Figure A.1 shows an example of a sequentialN-Queens program.

A.2 MAGMA

Figures A.2 and A.3 show the full MAGMAN-Queens program.

A.3 EARTH

Figures A.4 and A.5 show the source code of theN-Queens code in EARTH.

A.4 Cilk

Figures A.6 and A.7 show the Cilk program for the enumerationof theN-Queens.
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1 #include <stdlib.h>
2 #include <stdio.h>
3 #define MAX_QUEENS 24
4
5 int safe (int board[], int row, int col)
6 {
7 int rowchk, colchk;
8
9 for (rowchk = 0; rowchk < row; rowchk++) {

10 colchk = board[rowchk];
11 if ((col == colchk) || (row - rowchk == col - colchk) ||
12 (row - rowchk == colchk - col))
13 return 0;
14 }
15 return 1;
16 }
17
18 int sequeens(int n, int row, int start_col, int board[])
19 {
20 int col, sols_this_col, sols_other_cols;
21
22 if (row >= n) return 1;
23 for (col = start_col; col < n; col++) {
24 if (safe(board, row, col)) {
25 board[row] = col;
26 sols_this_col = sequeens(n, row+1, 0, board);
27 sols_other_cols = sequeens(n, row, col+1, board);
28 return (sols_this_col + sols_other_cols);
29 }
30 }
31 return 0;
32 }
33
34 main (int argc, char *argv[])
35 {
36 int n, result, board[MAX_QUEENS];
37
38 n = atoi(argv[1]);
39 printf("queens (%d) running on %d processors\n", n, 1);
40 result = sequeens(n, 0, 0, board);
41 printf("Number of solutions: %d\n", result);
42 }

Figure A.1: SequentialN-Queens Program
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1 nqueens(int n, int row, int start_col, int board[], SYNC_SLOT result)
2 {
3 int col;
4
5 for (col=start_col; col<n; col++) {
6 if (safe(board, row, col)) {
7 board[row] = col;
8 SPAWN(sum, result, SYNC(this_col), SYNC(other_cols));
9 if (row+1 == n) {

10 DATA_SYNC(1, SLOT_ADR(this_col));
11 }
12 else {
13 SPAWN(nqueens, n, row+1, 0, SYNC(board), SLOT_ADR(this_col));
14 GATHER_BLK_SYNC(gather, row, board, n*sizeof(int), SLOT_ADR(board));
15 }
16 if (col+1 == n) {
17 DATA_SYNC(0, SLOT_ADR(other_cols));
18 }
19 else {
20 SPAWN(nqueens, n, row, col+1, SYNC(board), SLOT_ADR(other_cols));
21 GATHER_BLK_SYNC(gather, row, board, n*sizeof(int), SLOT_ADR(board));
22 }
23 break;
24 }
25 }
26 if (col == n) {
27 DATA_SYNC(0, result);
28 }
29 }
30
31 sum(SYNC_SLOT int result, int sols_this_col, int sols_other_cols)
32 {
33 DATA_SYNC(sols_this_col+sols_other_cols, result);
34 }
35
36 gather(void *dst, void *src, int n, void *arg)
37 {
38 memcpy(dst, src, (int)arg);
39 }

Figure A.2: MAGMA N-Queens Program
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1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <magma.h>
4
5 #define MAX_BOARD_SIZE 24
6
7 int safe(int board[], int row, int col)
8 {
9 int rowchk, colchk;

10
11 for (rowchk=0; rowchk<row; rowchk++) {
12 colchk = board[rowchk];
13 if ((col == colchk) ||
14 (row - rowchk == col - colchk) ||
15 (row - rowchk == colchk - col))
16 return 0;
17 }
18 return 1;
19 }
20
21 void print_usage_and_die(void)
22 {
23 fprintf(stderr,"usage (with 1 <= size <= %d):\n"
24 " queens size\n", MAX_BOARD_SIZE);
25 exit(1);
26 }
27
28 int main (int argc, char *argv[])
29 {
30 int n;
31 int place[MAX_BOARD_SIZE];
32
33 if (argc != 2)
34 print_usage_and_die();
35
36 n = atoi(argv[1]);
37 if (n<1 || n>MAX_BOARD_SIZE)
38 print_usage_and_die();
39
40 SPAWN(done, SYNC(res), n);
41 SPAWN(nqueens, n, 0, 0, SYNC(board), SLOT_ADR(res));
42 BLK_SYNC(board, n*sizeof(int), 0, SLOT_ADR(board));
43 }
44
45 done(int result, int n)
46 {
47 printf ("queens(%d) = %d\n", n, result);
48 }

Figure A.3: MAGMA N-Queens main Function
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1 THREADED nqueens(int n, int row, int start_col,
2 int *GLOBAL previous, int *GLOBAL result, SPTR done)
3 {
4 int own_board[MAX_BOARD_SIZE],
5 col,
6 sols_this_col, sssols_other_cols;
7
8 sols_this_col = 0;
9 sols_other_cols = 0;

10 BLKMOV_SYNC(previous, TO_GLOBAL(own_board), row*sizeof(int), DATA_RECEIVED);
11
12 FIBER DATA_RECEIVED <* 1 *> {
13 for(col=start_col; col<n; col++) {
14 if (safe(own_board, row, col)) {
15 own_board[row] = col;
16 if (row+1 == n) {
17 sols_this_col = 1;
18 SYNC(DONE);
19 }
20 else {
21 TOKEN(nqueens, n, row+1, 0, TO_GLOBAL(own_board),
22 TO_GLOBAL(&sols_this_col), TO_SPTR(DONE));
23 }
24 if (col+1 == n) {
25 SYNC(DONE);
26 }
27 else {
28 TOKEN(nqueens, n, row, col+1, TO_GLOBAL(own_board),
29 TO_GLOBAL(&sols_other_cols), TO_SPTR(DONE));
30 }
31 break;
32 }
33 }
34 if (col == n) {
35 SPAWN(DONE);
36 }
37 }
38
39 FIBER DONE <* 2 *> {
40 PUT_SYNC(sols_this_col + sols_other_cols, result, done);
41 TERMINATE;
42 }
43 }

Figure A.4: EARTH N-Queens Program
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1 #include <stdio.h>
2 #include <stdlib.h>
3
4 #define MAX_BOARD_SIZE 24
5
6 int safe( int board[], int row, int col )
7 {
8 int rowchk, colchk;
9

10 for( rowchk = 0; rowchk < row; rowchk++ ) {
11 colchk = board[rowchk];
12 if ( (col == colchk) ||
13 (row - rowchk == col - colchk) ||
14 (row - rowchk == colchk - col) )
15 return( 0 );
16 }
17 return( 1 );
18 }
19
20 void print_usage_and_die()
21 {
22 fprintf( stderr, "usage (with 1 <= size <= %d):\n"
23 " queens size\n", MAX_BOARD_SIZE );
24 exit(1);
25 }
26
27 THREADED MAIN( int argc, char *argv[] )
28 {
29 int n, result, place[MAX_BOARD_SIZE];
30
31 if (argc != 2)
32 print_usage_and_die();
33
34 n = atoi(argv[1]);
35 if ( n < 1 || n > MAX_BOARD_SIZE )
36 print_usage_and_die();
37
38 INVOKE( 0, nqueens, n, 0, 0, TO_GLOBAL(place),
39 TO_GLOBAL(&result), TO_SPTR(DONE) );
40
41 FIBER DONE <* 1 *> {
42 printf( "Number of solutions for %d queens = %d\n",
43 n, result );
44 TERMINATE;
45 }
46 }

Figure A.5: EARTH N-Queens main Function
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1 cilk int nqueens(int n, int row, int start_col, int *previous)
2 {
3 int own_board[MAX_BOARD_SIZE], col, sols_this_col, sols_other_cols;
4
5 sols_this_col = sols_other_cols = 0;
6 memcpy(own_board, previous, row*sizeof(int));
7
8 if (row >= n) return 1;
9 for (col=start_col; col<n; col++) {

10 if (safe(own_board, row, col)) {
11 own_board[row] = col;
12 sols_this_col = spawn nqueens(n, row+1, 0, own_board);
13 sols_other_cols = spawn nqueens(n, row, col+1, own_board);
14 sync;
15 return (sols_this_col + sols_other_cols);
16 }
17 }
18 return 0;
19 }

Figure A.6: Cilk N-Queens Program
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1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <cilk.h>
4
5 #define MAX_BOARD_SIZE 24
6
7 int safe( int board[], int row, int col )
8 {
9 int rowchk, colchk;

10
11 for( rowchk = 0; rowchk < row; rowchk++ ) {
12 colchk = board[rowchk];
13 if ( (col == colchk) ||
14 (row - rowchk == col - colchk) ||
15 (row - rowchk == colchk - col) )
16 return( 0 );
17 }
18 return( 1 );
19 }
20
21 void print_usage_and_die()
22 {
23 fprintf( stderr, "usage (with 1 <= size <= %d):"
24 " queens size\n", MAX_BOARD_SIZE );
25 exit(1);
26 }
27
28 cilk int cilk_main(int argc, char *argv[])
29 {
30 int n, result, place[MAX_BOARD_SIZE];
31
32 if (argc != 2)
33 print_usage_and_die();
34
35 n = atoi(argv[1]);
36 if ( n < 1 || n > MAX_BOARD_SIZE )
37 print_usage_and_die();
38
39 result = spawn nqueens(n, 0, 0, place);
40 sync;
41 printf("Number of solutions for %d queens = %d\n",
42 n, result );
43 return 0;
44 }

Figure A.7: Cilk N-Queens main Function
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